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Abstract

In this article we investigate several models contained in the literature in the case of near-incompressibility based on
invariants in terms of polyconvexity and coerciveness inequality, which are sufficient to guarantee the existence of a
solution. These models are due to Rivlin and Saunders, namely the generalized polynomial-type elasticity, and Arruda
and Boyce. The extension to near-incompressibility is usually carried out by an additive decomposition of the strain
energy into a volume-changing and a volume-preserving part, where the volume-changing part depends on the de-
terminant of the deformation gradient and the volume-preserving part on the invariants of the unimodular right
Cauchy—Green tensor. It will be shown that the Arruda—Boyce model satisfies the polyconvexity condition, whereas the
polynomial-type elasticity does not. Therefore, we propose a new class of strain-energy functions depending on in-
variants. Moreover, we focus our attention on the structure of further isotropic strain-energy functions.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Most solid materials show in the finite strain range nearly incompressible, i.e. weakly compressible
material behaviour. The constitutive models concerned usually utilize hyperelasticity relations which des-
cribe one part of the model. This is done in the case of rate-dependent and rate-independent constitutive
theories such as viscoelasticity, elastoplasticity or viscoplasticity. Naturally, the investigations below are
also of interest in the case of purely elastic material behaviour. In analytical derivations the weakly
compressible behaviour, which can be observed in most experiments, is replaced by the assumption of
incompressibility in order to obtain particular solutions. On the other hand, it is much more convenient in
the numerical treatment of these constitutive models, for example, utilizing the finite element method, to
employ the nearly incompressible extension. In this case there are three usually employed constitutive

* Corresponding author. Tel.: +49-561-804-2719; fax: +49-561-804-2720.
E-mail address: hart@ifm.maschinenbau.uni-kassel.de (S. Hartmann).

0020-7683/03/$ - see front matter © 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0020-7683(03)00086-6


mail to: hart@ifm.maschinenbau.uni-kassel.de

2768 S. Hartmann, P. Neff | International Journal of Solids and Structures 40 (2003) 2767-2791

models in use, namely the generalized polynomial-type elasticity due to Rivlin and Saunders, the Arruda
and Boyce as well as Ogden’s model (Rivlin and Saunders, 1951; Arruda and Boyce, 1993; Ogden, 1972a).
The strain-energy functions concerned are originally formulated in the case of incompressibility as func-
tions of the first and second invariant or in eigenvalues of the left (or right) Cauchy—Green tensor. One way
of extending these models to the nearly incompressible case is to exchange the invariants or eigenvalues of
the original Cauchy—Green tensors, i.e. in the modified model one uses the unimodular part of the Cauchy—
Green tensors which are based on the multiplicative decomposition of the deformation gradient into a
volume-changing and a volume-preserving part. This decomposition goes back to Flory (1961). Further-
more, additional parts of the strain-energy function depend merely on the determinant of the deformation
gradient, i.e. the strain energy decomposes additively into two parts: one part depends on the volume-
changing part via the determinant of the deformation gradient and the other part on the invariants or
eigenvalues of the right Cauchy—Green tensor built up by the volume-preserving part of the deformation
gradient. This article discusses this modification of the models with respect to physical and mathematical
aspects.

A much debated question in the area of finite elasticity is the correct formulation of constitutive in-
equalities ensuring reasonable solutions to physical problems. Since we are focusing on hyperelastic ma-
terial behaviour these constitutive inequalities translate into conditions on the free energy. The so-called
Baker—Ericksen inequalities, the Coleman—Noll condition or Hill’s inequality may serve as examples for the
earlier attempts to establish these correct formulations. For a discussion on these inequalities see, for ex-
ample, Baker and Ericksen (1954), Marsden and Hughes (1983), Truesdell and Noll (1965), Wang and
Truesdell (1973), Hill (1970) and Ogden (1984). However, these inequalities could not be proved to
guarantee the well-posedness of the problem. Moreover, some criteria cannot be shown to be satisfied a
priori.

The mathematical treatment of the corresponding boundary-value problem (the structural mechanics
problem) is mainly based on the direct methods of variation, i.e. to find a minimizing deformation of the
elastic free energy subject to the specific boundary conditions. This minimizing deformation is found by
constructing infimizing sequences of deformations and then showing that the sequence converges in some
sense to the sought minimizer. The main ingredient for carrying out this program is a quasi-convexity
hypothesis on the free energy, Morrey (1952): roughly, it ensures that the functional to be minimized is
weakly lower semi-continuous. However, this condition is difficult to handle since it is a non-local integral
condition. A much more tractable condition has been introduced by Ball in his seminal article (Ball, 1977a),
it is the so-called polyconvexity condition. There exists a vast literature on polyconvexity (see e.g., Ball,
1977a,b; Marsden and Hughes, 1983; Ciarlet, 1988; Charrier et al., 1988 and the literature cited there) and
fortunately some energy expressions already introduced are covered by this concept (Ogden’s, Mooney-
Rivlin and Neo-Hookean model). For isochoric-volumetric decouplings some forms of polyconvex energies
have been proposed by Charrier et al. (1988) or Dacorogna (1989, p. 134 and pp. 256ff.). There are some
simple stored energies of St. Venant-Kirchhoff type (Ciarlet, 1988; Raoult, 1986) or energies involving the
so-called (logarithmic) Hencky tensor which, however, do not satisfy the polyconvexity condition (Neff,
2000). Moreover, it can be shown that neither St.Venant-Kirchhoff nor strain-energy functions based on
Hencky strains lead to elliptic equilibrium conditions.

It can be shown that polyconvexity of the stored energy implies that the corresponding acoustic tensor is
elliptic for all deformations whatsoever, moreover strict ellipticity is sufficient for the Baker—Ericksen in-
equalities to hold. The precise difference between the local property of ellipticity and quasi-convexity is still
an active field of research, since counterexamples exist which are elliptic throughout but not quasi-convex.
However, these examples are neither frame indifferent nor isotropic; from a purely mechanical point of view
this difference might be negligible. Polyconvexity as such does not conflict with the possible non-uniqueness
of equilibrium solutions, since it only guarantees the existence of at least one minimizing deformation. It is
possible that several metastable states (local equilibria) and several absolute minimizers exist, even so, one
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might conjecture that apart from trivial symmetries the absolute minimizer is unique, at least for the pure
Dirichlet boundary-value problem. In general, under polyconvexity assumptions, no claim can be made as
to the stability or smoothness of the solution, apart from the natural statement that the minimizer lies in the
Sobolev space considered. Moreover, it is not known that the minimizing deformation is a weak solution of
the local balance equation, due to possible singularities in the deformation gradient. We remark, following
(Ball, 1977a, p. 398) that polyconvexity implies the existence for all boundary conditions and body forces
which might be somewhat unrealistic. The conclusion that one particular form of the stored energy is not
polyconvex does not mean that this energy should be ruled out from the outset. Indeed, the corresponding
failure of ellipticity at large deformation gradients only (see the examples below) might be physically
correct, indicating, for example, the onset of fracture or some other local instability like the formation of
microstructure. On the other hand, the proof that some energy is elliptic for a reasonable range of de-
formation is presently not enough to establish an existence theorem. Since we will be concerned with nearly
incompressible isotropic hyperelasticity only where we expect neither fracture nor microstructure, the
polyconvexity assumption seems to be a convenient mathematical tool to ascertain the existence of a
minimizer of an elastic free energy.

Our main contribution consists of enlarging the class of known polyconvex energies including ex-
pressions which bear resemblance to the generalized polynomial-type elasticity relations due to Rivlin and
Saunders (1951), defined by modified invariants mentioned above. To our knowledge general polynomial
energy expressions like those of Rivlin and Saunders (1951) or Arruda and Boyce (1993) have not been
investigated with respect to polyconvexity. The polyconvexity conditions will then translate into a re-
quirement on the structure of the polynomial terms and the restriction to positive material parameters.

2. Strain-energy functions

We start with the multiplicative decomposition of the deformation gradient F = Grad(}'()? ,t) of a ma-
terial point X at time ¢ into a volume-changing and a volume-preserving part

F = FF. (2.1)

- o

¥ = ¢(X,1) denotes the deformation. Bold-face roman letters denote tensorial quantities. The volume-
preserving part

F=J"'"°F,  detF=1, (2.2)

J = det F, and the volume-changing part F = J'/3L, are used to define unimodular left and right Cauchy-
Green tensors

C=FF, B=FF, (2.3)
det C = det B = 1, which can be expressed by the original Cauchy—Green tensors C = F'F and B = FF' via
C=J72°C and B=J?°B. (2.4)

Now, we define the two sets of invariants
lc=trC, Ilc= g((trcf - trC2>, Il = det C (2.5)

and

I. = trC, Il = 1((tr€)2 - tréz) —trC ' = tradjC. (2.6)

C 2
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Eq. (2.6), becomes obvious in view of the evaluation of condition det C = 1 and Cayley-Hamilton’s theo-
rem, see Eq. (A.1) of Appendix A. adjA = (det A)A~' denotes the adjugate and tr A = a;; defines the trace
of a second order tensor.

In order to obtain a basic representation with respect to the polyconvexity condition, we must express the
invariants by the deformation gradient F, by the determinant J and by the adjugate adjF = (det F)F '

2
[l

adj |
(det F)**’

IE(‘]7 F) = (det F)4/3 ’

1I5(J, adjF) = (2.7)

|F||* defines the scalar product of the deformation gradient, ||F||* = (F,F).

In the following, we study some frequently used strain-energy functions in the cases of incompressibility
and their extension to near-incompressibility in view of the existence of the solutions (polyconvexity and
coerciveness). Furthermore, we develop a new class of models satisfying mathematical requirements in
particular.

2.1. Incompressibility

During the past decades three models of strain-energy functions for hyperelastic solid materials have
usually been preferred in finite element applications, namely the models of Rivlin and Saunders (1951),
Arruda and Boyce (1993) as well as Ogden (1972a). In the case of incompressibility these models comply
with the representation shown in Table 1.

The model of Rivlin and Saunders represents a class of various models depending on the maximum order
m and n as well as the material parameters ¢;; = 0, which are prescribed in advance. For instance, m = n = 1
and ¢y = ¢;; = 0 defines the classical Mooney-Rivlin model. In Hartmann (2001a,b) a variety of these
models are summarized and studied with respect to identification of the material parameters c;;, in par-
ticular their sensitivity with regard to the identification as well as requirements for the material parameters
to ensure physically plausible curves. It is shown that for non-negative material parameters the well-known
non-monotonous stress—strain curves in simple tension, biaxial tension, simple shear and tension—torsion
tests cannot occur. For deformation processes mentioned before the identification of the material
parameters leads to a linear least-square problem with non-negative solutions (¢;; = 0) which is simple to
treat.

The Arruda and Boyce model is motivated by considerations on the microlevel and leads to two material
parameters ¢ and N which have to be positive in view of physical considerations. The factors d; are fixed
numbers defined a priori (they result from a Taylor expansion of the Langevin function). Obviously, the
model is independent of the second invariant. The identification of material parameters leads to a non-
linear least-square problem with a positive solution (¢ > 0, N > 0). Parameter identification is discussed, for
example, by Przybylo and Arruda (1998) or Seibert and Schoche (2000).

Table 1
Strain-energy functions for incompressible hyperelastic materials
Rivlin/Saunders wrs(Ie, Ie) = 320 327 g eI — 3) (I — 3)
N - mon 2 P12 j
vors(F,F 1) = 50000 300 g ey (IR = 3)(JF|)° = 3)
Arruda/Boyce wap(Ic) = e Y1 diN'(I. — 37)
Wan(F) = ¢ 37 diN'/(|FI* — 3)
N (2 oi/2 %i/2
Ogden wo iy, s 3) = D004 7,(:“1 + 157+ 1577 = 3)

WO(AI,;»z,/Ag) = Z;n:l ;‘*"(/ALT' + 2;’ “r}.? - 3)




S. Hartmann, P. Neff | International Journal of Solids and Structures 40 (2003) 2767-2791 2771

The Ogden model depends on the eigenvalues y; of the right Cauchy—Green tensor, C = Z,}:l Witd; @ 1y, or
on the eigenvalues 4; = /1i; of the right or left stretch tensors U = Z?:l Aitl; @ u; or V = 2[3:1 Ail; ® U; (see
Table 1), which result from the polar decomposition of the deformation gradient, F = RU = VR.RT = R™!
denotes the rotation tensor and #; and #; the eigenvectors of the right and left stretch tensors U and V. In
order to satisfy incompressibility, u; = (u],uz)*1 must hold. y;, and o; represent material parameters. They
should satisfy the inequalities y;; > 0 (no sum over i) so that the constitutive model satisfies Hill’s sta-
bility criteria to give physically plausible curves (Ogden, 1972a). According to Ciarlet (1988) the material
parameters have to satisfy the conditions y; > 0 and «; > 1 in order to ensure polyconvexity and the co-
erciveness inequality, which is a stronger assumption in view of the range of the material parameters.
Obviously, it fulfils Hill’s stability criteria as well (Hill, 1970). The constitutive model is motivated for n = 2
by physical considerations on the microlevel by Kaliske and Heinrich (1999).

The identification of the material parameters of the Ogden model has been carried out by Twizell and
Ogden (1983), Benjeddou et al. (1993), Gendy and Saleeb (2000), Przybylo and Arruda (1998) as well as
Smeulders and Govindjee (1998). The identification leads to a non-linear least-square problem with non-
linear inequality constraints. However, only a few of the aforementioned articles incorporate the inequality
constraints of the material parameters. The number of Ogden terms is chosen with m <4 at a maximum.

2.2. Weak compressibility

Usually the extension to nearly incompressible material behaviour is modelled using the multiplicative
decomposition of the deformation gradient (2.1) into volume-preserving and volume-changing parts.
Furthermore, it is assumed that the strain-energy function consists of two parts

Y/, Ig g) = UWJ) + w(lg, IIg) (2.8)
or
¥(J,F,adjF) = U(J) + w(J,F,adjF) (2.9)

so that the resulting stress state decomposes into a pure hydrostatic and a pure deviatoric part, see Eq.
(3.14). The strain-energy functions in Table 1 are usually modified by exchanging the tensorial quantities,
here the right Cauchy—Green tensor C, with the unimodular tensor (2.4),

wes (Ig, Ig) ch,, ) (s — 3Y, (2.10)
i=0 ;=0
wag(I —chNl’ — 37 (2.11)
—_— = = Vi —o —0 —o;/ — — — \—
wolf T, i) = 30 L+ 4 - 3), = () (2.12)

i=1 1

or expressed in the variables (J, F,adjF)

s (1, adiF) = S e, (I = 3 adiFIF - 3, (2.13)

i=0 ;=0

WA/, F) = ¢ Y dN' (S0 R - 3), (2.14)

i=1
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Z’" Y
“ 7T T I - - 5 -1
Wo(/ll,)uz,/@) = 7[(/11 + /12 + Ay — 3), )LS = (/11/12) s (215)

respectively.

In the literature the strain-energy function U(J) is assumed to satisfy the physically plausible conditions
U(l)=0,U(J)|,_y = +oo and U(J)|,_ . = +oo. In Ehlers and Eipper (1998) ansatz (2.15) has been in-
vestigated. For simple tension tests they have shown that in the case of a determinant of the deformations
gradient J, which is not close to one, non-physical behaviour of the models may occur. However, the reason
for this and the desired a priori exclusion of these phenomena constitute an open problem. We look at these
phenomena in Section 3.

2.3. Polyconvexity condition

In this part of the paper we investigate the polyconvexity conditions alluded to above and investigate the
strain energies (2.13) and (2.14). Furthermore, new strain energy functions are proposed allowing for a
proof of the existence of a solution of boundary-value problems. The modification in view of the isochoric
and volumetric split of Ogden’s strain-energy function (2.15) has already been investigated in terms of the
existence of a solution (Charrier et al., 1988). Therefore, we restrict ourselves to the investigation of the
special formulation using these isochoric invariants.

Whereas the whole formalism derived up to now could be based on considerations pertaining to the right
Cauchy-Green tensor C = F'F, the investigation of the polyconvexity condition is directly based on ex-
pressions defined on the deformation gradient F. Therefore, in this subsection we use the deformation
gradient F and the quantities adjF and det F, i.e. the formulations (2.13) and (2.14).

Because the polyconvexity condition is connected to convexity, quasi-convexity and ellipticity, we have
summarized the essential mathematical definitions in Appendices B and C, so that a self-explanatory text is
obtained.

Since the following considerations are independent of the metric, we choose for simplicity a direct matrix
notation. In this case we omit bold-face notation for the sake of easier readability. For a,b € R* we let
(a,b)ps = a"b = bTa symbolizing the scalar product on R* with the norm ||a|3 = (a,a)p: = a"a. Fur-
thermore, M**® denotes the set of real 3 x 3 matrices. Here, the standard Euclidean scalar product on M**?
is given by (4, B) = tr (4B") = tr (4TB) with tr the trace operator and we have the norm ||4||%; = (4, 4). For
brevity we omit in the following the indices R* and M***. adj4 denotes the adjugate matrix, i.e. the matrix
of transposed cofactors cof 4 such that adj4 = (det4)4d~" = (cof 4)" if 4 € GL(3,R), where GL(3,R) is
the set of invertible 3 x 3 matrices. The identity matrix on M*** will be denoted by 1 so that tr4 = (4,1)
holds. A lower dot in a = 4.h symbolizes the application of 4 € M** onto b € R® yielding the vector
a € R’. Furthermore, we need the first and second Fréchet derivatives Df(4).H and D*f(4).(H,H). Sub-
sequently, we need the sets Sym and Sym™ denoting the sets of symmetric and symmetric positive definite
3 X 3 matrices, respectively.

First of all, we emphasize the property of unimodularity for C = FTF, namely det C = 1 with C in Eq.
(2.4). Since we intend to investigate strain energies of the form

T
W(F) = U(detF) + Wy, Lm ;
(det FTF)/"

i.e. the free energy decomposes additively into two terms resulting from purely isochoric and volumetric
deformations. We will show that this ansatz is compatible, under certain circumstances, with the re-
quirement of polyconvexity. To this end, we first study the isochoric part of the strain energy function and
then we focus our attention to the (simpler) volumetric part.
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2.3.1. Isochoric part of the strain energy function
Let us start with a preliminary clarification since the determinant of the deformation gradient has to be

assumed to be positive. Let, for example, W;(4) = (4,1), and define
— F'F
is0(F)=C=—"—7.
(det(FTF))

Then

FTF ) Al
VViso 71/3 = VV] (ISO (F)) = (detF)2/3 detF > 07
(det(FTF)) 00 det F <0

and W(F) = W (iso (F)) is a polyconvex function (however, not of the additive type, Corollary C.2). For
the remainder let us agree to extend functions W which are naturally only defined on the set det F > 0 to
M?**3 by setting W = oo for arguments with det 7 < 0. With such an extension it is clear that ¥ can never be
convex, for it is supported on a non-convex set only. However, this extension is compatible with the re-
quirement of polyconvexity since

_ /) x>0,
Plx) = {oo 2 <0 (2.16)
is a convex function whenever f is convex on R™'.

In the following, we state several lemmas. The first one is connected to the basic invariant Iz. The second
one studies generalized polyconvex strain energy terms, which are followed by two essential terms satisfying
a stress-free reference configuration. Lastly, we show that in the case of the generalized polynomial-type
elasticity (2.13) for various terms ellipticity may be lost and an existence proof based on our methods
cannot be given.

We start with the investigation of strain energy functions depending on the first invariant Iz of uni-
modular right Cauchy tensor C, here expressed by the deformation gradient F:

Lemma 2.1 (Isochoric terms). Let the strain energy be of the type W(F) = ||F|*/(detF)*. Then W is
polyconvex.

This can be proved as follows:

Proof. First, we investigate the convexity of the function P : R x R — R, P(x,y) = f(x)g(y). The matrix
of second derivatives is of course

o [S@E0) @)
DPxY) = 10gt) rog'e)

If f,g are positive, smooth and convex, then we have f”(x)g(y) >0 and detD?*P(x,y)=
7"(x)g()f(x)g" () — (f'(x)g'(x))*. Note that P is convex, if D2P is positive definite by Lemma B.2. In our
situation D?P is positive definite if f”(x) - g(y) = 0 and det D*P(x,y) = 0. Thus we must guarantee that

F" @) (08" ) = (f ()8 (x))*.
Let « > 0 and p > 2. We choose f(x) = x* and g(y) = y*. Then

f'x)g0)f(0)g" () = alo+ 1D)x FyPxp(p — 1)y7?

and

(f'(x)g (x))? = (—ox D pyr1)? = g2y 24 p2) 2071
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We arrive at the condition that

oc+l>L.
o p—1

The larger one chooses p, the better for the choice of a. Notably, P(x,y) = (1/x*) - y? is convex for
o=2/3 and p = 2. We set

2
I1£]

w(F,J)=P(J,[IF]) = ik

We check the convexity of W (F,J). Thus

147 + (1 = 2B
(WJ1 + (1= )J)°

W R + (1= P, 20y + (1= ) D) = PGJy + (1= D)o, |28 + (1 = DR =

and the monotonicity of the square for positive arguments yields
GlIF I+ (1 = 2)1F])*

(T + (1 = D)J)*
= P(AJy + (1= D), A A + (1= DIE]).

W(F + (1= )R, 2 + (1= W) ) <

Since by assumption P is convex, we obtain
W(F + (1= DB, 40y + (1= A)J2) APy || ) + (1= 2P, [|B])

Now recall the extension of ¥ to all of M*** and use (2.16). Thus we have shown that W is convex on the
convex set M*? x R and convexly extended to M*** x R. The proof is complete. For a proof also
compare with Charrier et al. (1988) or Dacorogna (1989, p. 140). O

Since we are interested in the investigation of the modified generalized polynomial-type elasticity (2.10)
or (2.13), respectively, we look at the following specific terms:

Lemma 2.2 (Special polyconvex terms). Let F € M***. Then each of the following terms is polyconvex:

1) F ﬂ—s =(trC-3), i>1
= (det F)*? - ozt

2 FH('E:?)E‘“@) = (radi O = 33, j= 1.

Proof

(1) We have already checked in Lemma 2.1 that the expression ||F|*/(det F )2/ ? is polyconvex, hence
there exists a convex function P(F,det F) = ||F||*/(det F)*°. Note that in view of the estimates for the
invariants Corollary A.3 of Appendix A we know that P(F,detF)—3 > 0. We define the function
la], = max{a,0}. Note that x— max{f(x),0} is convex if f is convex. Then
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(LVM _ 3) = [P(F,detF) -3],.
(det F) e

XeR!

P is convex in F and x — x', i > 1, is monotonically increasing for positive values and convex, hence
[P(X) — 3], is altogether convex in X which is however the polyconvexity of F— [P(F,det F) — 3],. Since
this last expression coincides with

LAY
(det F)*

the polyconvexity is proved.

(2) We know already that (||adjF||’/(det F)*) — 3v/3 is polyconvex since the exponents verify the decisive
inequality (o4 1)/a = p/(p — 1). Moreover, (||adjF|’/(det F)*) — 3v/3 > 0 with Lemma A.3. Exactly the
same reasoning applies now as before. [

A generalization of the above mentioned strain energy functions yield the more general class of isochoric
strain energy terms by the following corollary.

Corollary 2.3. Let F € M**®. Then each of the following more general terms is polyconvex:

(1) Fe— ﬂ—y‘ i>1k>1
(det F)*7 T

@) Fo (Hadjﬂ“’ B

J
(@t F) Bﬁ)k) L IEhEeEh

3 | ||F||2k 3k i 1 i > 1 >1
() F|—>exp W— — 1, 1= 7k/ .

[ |ladj F|* !
(4) Frexp (%_(3\@)k”_1, j=lk>1.

In order to prove the aforementioned corollary one has to apply the same ideas as before and note that
exp is a convex monotonically increasing function, so we may apply Lemma B.7.

Since we are interested in the generalized polynomial-type elasticity, we look at the terms of the second
invariant Iz = J —4/ 3||ade||2 in Eq. (2.10) or (2.13). These terms are not polyconvex, i.c. the existence of a
solution of a boundary-value problem cannot be guaranteed:

Lemma 2.4 (Non-ellipticity of mixed terms). The following terms are non-elliptic hence not polyconvex:

2 i PR J
W(F) = ﬂb}—s M—Ni , hj=1
(det F)* (det F)
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Moreover, the term

djF|’ i
o (REEL 5 s
(detF)
is non-elliptic, hence it cannot be polyconvex, even so (||adjF||*/(det F)**) — 3 > 0 in the light of Corollary

A.3. Here the term ||adjF||*/(det F )4/ 3 itself does not have the right exponents for polyconvexity (Charrier
et al., 1988).

Proof. We let i, j = 1 and consider the eigenvalue representation of W (F):
22 92, g2 i 2 2 213/2 J
A ) A
wiF) =25 s () ¥ Uaha HIWATT 3 3 s, ).
(/‘{1},2/’{3) (JVI/LZJG)

We take a deformation with deformation gradient F = diag (0.1, 10,¢) with r € R". If W(F) is rank-one
convex, then

10001 2 \'[ 11410001212 /
$(0.1,10,1) = (M_3) (M_m

12/3 2

should be convex, according to Theorem C.5. However, this is not the case, as can easily be verified.
Typically, convexity in ¢ (hence ellipticity with respect to F) is lost for extreme deformations only. [

Table 2 summarizes new classes of polyconvex strain energy functions in terms of tensorial quantities and
in respect to the decomposition into isochoric and volumetric parts.

Lemma 2.4 has shown that the modified generalized polynomial-type elasticity cannot be polyconvex as a
result of the choice of the terms (IIz — 3)’. If we modify these strain-energy functions into ll%/ 2 3y/3—see
Corollary 2.3, proposal 2, in the case of k= l—polyconvexity is only sati2sfied if products
(Il — 3)’(11%/ > —34/3) do not occur, i.e. the first and second invariant are decoupled, see Lemma 2.4 as
well. Furthermore, we point out in view of Corollary 2.3, proposal 1, that in the case of i = 1 the isochoric
part of the strain energy of Arruda and Boyce is polyconvex.

2.3.2. Volumetric part of the strain-energy function

The volumetric part of the strain energy function U(J) in ansatz (2.8) or (2.9) has merely to be convex in
the variable J = det F. In Table 3 various new convex strain energy functions are proposed. Of course, they
have to be modified in order to satisfy the requirement of a stress-free reference configuration.

In the framework of the finite element method one mostly uses one term of the volumetric strain energy,
U(J) = KU(J), where K represents the compression modulus and U(J) the principle function of the de-
terminant J. From the physical point of view we should fulfill a energy- and stress-free reference confi-
guration U(1) =0 and U'(1) = 0. In the case of U"(1) =K, i.e. U"(1) =1, K can be interpreted as the
compression modulus of linear elasticity. The convexity requirement implies U(J) — oo for J — 0 and

Table 2

Polyconvex isochoric strain energy terms
@1(15)5(1%73")1 i1 k>1
pallic) = (22— (3v3)") jz k=1
#3(91(Ig)) = exp(e (Ig)) — 1 izlk>1
?4(0:2(Tg)) = exp(o,(Ilg)) — 1 izlk=1




S. Hartmann, P. Neff | International Journal of Solids and Structures 40 (2003) 2767-2791 2777

Table 3

New convex isochoric strain energy functions
¥+ =2 p=1/2k>1
=1 k>1

J?—2InJ 4+ 4(InJ)

Table 4
Volumetric strain energy functions of the literature
oW U'(J) 0" (J) Reference
1. L -1y J—1 1
2. 1 ((J —1) (1nJ)2> L(J—1+41nJ) (142 —1nJ) Simo and Taylor (1982)
3. HnJ)? 1lnJg £(1—InJ) Simo et al. (1985)
4. #Gr—1+pmnJ) 56— %) 5 (LB —=J7) Ogden (1972b)
5. LJ2=1-2InJ) -4 J(1+4) Simo and Taylor (1991)
6. J—InJ -1 1-1 + Miehe (1994)
7. JEBIng — 1)+ 1 B 7izinJg BIF2(1+ (- 1)InJ) Hartmann (2002)
8. JIng —J +1 InJ 1 Liu et al. (1994)
9. L2y LB =) H5%+377) ANSYS (2000)
10. g (1 - {f’,;) +5 L1 - J0+h) Murnaghan (1951, S. 68)
11. S+ =-2) AR ! @ +6J77)

J — oo as well as U”(J) = 0, so that a volumetric compression or stretch yields hydrostatic pressure or
tension. In Table 4 models of the literature are summarized. Model 11 is a particular version of the first
proposal of Table 2 for £ = 1 and p = 5/2, which is used in the forthcoming section.

Figs. 1 and 2 show the behaviour of the models 1-3, 5, 6, 8, 9 as well as 11 in the region 0 < J < 5. Model
1 represents a linear approximation of hydrostatic stresses and is included in the generalized form, no. 1, in
Table 3, (trT)/3 =U'(J), see Eq. (3.14). However, model 1 has a finite limit in the case of
lim; o U(J) =1/2 or lim;_, U’'(J) = —1, which is not plausible for higher volumetric deformations. The

model 11 -

UQJ)/K

L L L

5 3 35 4 45 5

05115 2 2
J=detF

Fig. 1. Behaviour of the strain energy functions in Table 4.
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model 1 ——
model 2 -

T —

U)K

-10 Lo ! ! ! ! ! ! ! !
05 1 15 2 25 3 35 4 45 5

J=detF

Fig. 2. Behaviour of the hydrostatic stresses in view of the volumetric strain energy functions of Table 4.

extension by the natural logarithm in model 2 corrects this characteristic. If one uses only the correction
term, see model 3, convexity is violated for J > e=2.718..., i.e. U"(J) < 0. Fig. 2 shows a decreasing
stress curve during volumetric tension. Models 5 and 6 are included in Ogden’s model, here model 4 for
p=—-2and = —1. The case f =1 is applied in Ehlers and Eipper (1998). Model 8 is, however, incor-
porated for f = 1 in model 7. Obviously, convexity is not satisfied for all § in model 7. In this work we have
modified models 8 and 9 in view of the original literature in order to satisfy condition U"(1) = 1. Model 10
of Murnaghan (1951, S. 68) is originally developed in terms of hydrostatic pressure. Here, we developed the
strain-energy concerned by integration. Our proposal of model 11 has some advantageous properties in
view of physical plausible tensile tests, see later.

3. Investigation of the proposed strain-energy function

The aforementioned mathematical studies lead, for example, to the polyconvex strain energy

Y/, 1g, ) = U(J) + w(lg, 1g) (3.1)
with
K .
UJ) = B0 (S +J7° =2), (3.2)
w(le, Ilg) = o(I2 — 3%) + Em:c,-o(la -3 + i:co,-(ng/z —3V3y (3.3)
i=1 j=1

which satisfies coercivity as well (see Appendix D).

Remark 1. A further mathematical notion is called “coercivity’’. Coercivity is a condition imposed on the
growth of the strain energy for deformation gradients in the range of finite deformations. It is a necessary
part of the existence proof via the direct methods of variations. For additional comments see Ciarlet (1988).
A concrete strain energy formulation, which satisfies this condition as well, is given in Egs. (3.2) and (3.3).
The proof of its coercivity is given in Appendix D.
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First of all, we have to mention the problem of material parameter identification. Since not all defor-
mations for compressible solids yield analytical solutions, the identification problem for the strain energy
(3.1) is non-linear—see, for example, equation system (3.22). If the compressible part of the strain energy is
only chosen with a view to improving the numerical calculations by means of the finite element method and
the material under investigation is very close to the incompressible case, then the parameter estimation can
be carried out by identifying the parameters o > 0, c;p > 0,i=1,...,m,and ¢p; =0, j = 1,...,m, using the
assumption of incompressibility. This yields in the cases of simple tension, pure and simple shear, biaxial
tension and combined tension—torsion tests analytical solutions which are linear in the material parameters.
In this case one has to apply a linear least-square method with non-negative solutions (see e.g., Hartmann,
2001a,b). Here, we have to emphasize that during the identification process the material parameter o has to
be different to zero in order to satisfy the coerciveness inequality.

Here, we choose one of the simplest constitutive models with U(J) of Eq. (3.2) and with m = n = 1 of Eq.
(3.3),

w(lg, Ig) = (I3 = 27) + c1o(Ig — 3) + cor (I = 3v/3), (3.4)

i.e. we are interested in the identification of the material parameters o, ¢;o and cq;. For the identification
process we use the experimental data of Haupt and Sedlan (2001) of a tension, a pure torsion and two
combined tension—torsion tests applying a particular weighting technique, see Hartmann (2001b). This
yields the material parameters oo = 0.00367 MPa, ¢o; = 0.1958 MPa and ¢y = 0.1788 MPa. Then we obtain
the S-shaped curve in a uniaxial tension-compression diagram (see Fig. 3).

For these material parameters, we later discuss the behaviour of the model in the nearly incompressible
case. To this end, we consider in a first step the general stress state which is calculated as follows: the second
Piola—Kirchhoff tensor T is defined by

~  dy _[dU((det©)'?)  dw(C(C))
T—ch_2< ic g |- (3.5)
The derivative dU/dC is given by
1/2
M = 1JU’(J)C*1’ (3.6)

dC 2

1000 /
800

600 /

z Ve
%é 400
£ 200
3
g 0
15}
=
-200 /
model
400 | testdata m
05 1 15 2 25 3

stretch A

Fig. 3. Uniaxial stress-stretch behaviour (incompressibility).
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where we make use of J = (det C)"/%. The derivative dw/dC is calculated by means of

dw(dEC(c» _ [% j—% (3.7)
with
[Eﬂ ' = (det €)' [f - % (C'® C)} =J7" [f - % (C'o f)} : (38)

. denotes the fourth-order identity tensor, .#A = A. Obviously, C"' @ C = C ' ® C holds. Since we have
the particular dependence of the invariants, the derivative dw/dC results from the chain rule

dw ow dlg ow dllg

dc L dc + 3l dc (Wi + wolg)l = w,C (3.9)
with
ow < . i1
wi (Ig, IIg) = o 300 + ;cioz(IE -3) (3.10)
and
_ow ¢ 3120032 -1
wi (Ig, Ig) _@_ZC"HEHG (22 — 3v/3y7". (3.11)
Now, we arrive at two parts of the stress state:
T = T + Tieo (3.12)
= JU'(J)C + 277 ((m + wale)T = wyC — L(wy T + 2w2116)6‘1). (3.13)

Additionally, we remark that the push-forward of the second Piola—Kirchhoff tensor to the current
configuration, represented by the Cauchy stress tensor T = J'FTF', leads to

T= U'(J)1+g (d—WB)D (3.14)
N J\dB /"’ ’

where it becomes obvious that the decomposition of the strain-energy function yields in a natural way
purely hydrostatic and pure deviatoric stress states caused by the specific form of the strain-energy function.

The superscript D symbolizes the deviator operator, A” = A — (1/3)(trA)L
The tangent operator concerned

. d>y dT -~ .
(5—4dCdC—ZE—(€Vol+(€iso (3.15)
which decomposes additively into a volumetric and an isochoric part, has the representation
G = J [(U/(J) +IUI)C @ C - 2U()[C @ C"]T”} : (3.16)
~ l—1 -1 d&w 11— — 23 . —1 =1 _ ~
o =4S — = —— | —= ——— |Tio Tiso
G0 =47 { ;€ ®C]dCdC{ ;CoC ] T2 €' +C Ty

4j743 [ dw 1 11T 11
+5 (C-E>HC ®C | -3C ®C} (3.17)
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with
d*w

dcdc

<W11 + 2W121€ + szl% + W2>I (9 I- (le -+ IEWQZ) [I X é + C ® I] — sz + WZQE ® E,
(3.18)

see, for example, Holzapfel (2000). Here, we introduce the following abbreviations: the superscript T;
denotes the transposition of the second and third index leading to [A ® B]T”C = ACB', as well as w; =
aw,/GIE and Wi = Gw,/GIIE

Now, in the case of our particular isochoric strain-energy function (3.4) we are interested in the limit of
small deformations and connecting the material parameters to the material parameters of linear elasticity,
namely the compression modulus K and the shear modulus G. Near the reference state, €|p_;, we obtain
from Egs. (3.16) and (3.17) the elasticity tensor

Gl =KI®1+2G[s - a]] (3.19)
with
G = 540+ 2¢19 + 3V3¢q1. (3.20)

The compression modulus K of the finite elasticity model coincides with K of the linear elastic case in a
natural way.

Now, we investigate the simple tension problem with a deformation gradient F = 1¢; ® €, + 1gé, ® é, +
/0€3 @ €3, where A denotes the axial stretch and /o, the transversal stretch. The stresses in transversal
direction are zero. Thus, Eq. (3.13) leads to the two equations

Tiy = £ (2 29), (3.21)

0=g(4, ) (3.22)
for given A, with

f (A 2g) = JU' (D)7 4207253 (wy 4 walg — wa 2T 72 — LI + 2wollg) A 2J73), (3.23)

g(2,29) =JU'(J) Ay + 272 (w1 + wale — wadd 2 — L(w I + 2W2HE)/1§2J2/3). (3.24)

Eq. (3.22) represents a scalar non-linear equation in order to calculate Ay.
For the particular model (3.4) we have, using the kinematic relations J = M;, Ic=J -2/ 3(22 + 212Q) and
Iz =J2 (07 + 2/152), the derivatives

= f{—o (J4 — J76>, w; =cCjo + 30(126 and Wy = Co1 %IIIE/Z (325)

Although the material parameters are developed for near-incompressibility, we investigate the variation
of the compression modulus. In Fig. 4 the compression modulus K is varied and we compare the lateral
stretch with the incompressible case. In the proximity to the undeformed state, the lateral stretch A, is
similar to the incompressible case (see Fig. 4). For a higher axial compression, / — 0, the lateral stretch
increases monotonically, which one would expect in view of physical experiences or, equivalently, for a
highly stretched specimen, 4 — oo, Ay decreases and Ay > 0 holds. This fact differs from the results of
Ehlers and Eipper (1998). On the basis of a few number of models of type (2.8) they emphasize the problem
using strain-energy functions of type (3.1) which might show a non-physical behaviour in lateral direction.
Of course, Fig. 4 does not prove that in such a diagram the slope is monotonically increasing or decreasing
in the compression or tensile range respectively, but we do not observe for the small compression moduli

U'(/)
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Fig. 4. Lateral stretch versus stretch diagram.

chosen the non-physical behaviour described. The behaviour in the lateral direction depends essentially on
the interplay between the strain-energy parts U(J) and w(Ig, Ilz), which is very difficult to study due to the
non-linear equation (3.22) and the difficulty to carry out experiments activating only U(J) or w(lIg, llg).

4. Conclusions

In this article we propose a new class of isotropic hyperelasticity relations for near-incompressibility
based on principal invariants. We have proven the existence of a solution based on polyconvexity and
coerciveness. Furthermore, we have shown that the extension of the strain energy of Arruda and Boyce
(1993) containing unimodular tensorial quantities satisfies polyconvexity. Moreover, the extension of the
generalized polynomial-type hyperelasticity is usually non-polyconvex. However, a particular dependence
of the first and second invariant yields a polyconvex structure. The proposed strain-energy function for
near-incompressibility has the specific advantage of being linear in the material parameters which, in the
case of their identification, leads to a linear least-square problem with non-negative solution. Furthermore,
the identification seems to be mostly non-sensitive.

Some studies of a particular model do not show a non-physical behaviour in the investigated examples,
for instance, for the lateral expansion or stretch in uniaxial compression and tension, which results from the
proposed volumetric part of the strain-energy function.

Appendix A. Necessary mathematical relationships

In the main part of the article some relationships are necessary. Here, we show the essential ones. First,
for the subsequent proofs we need the Cayley-Hamilton theorem resulting from the characteristic poly-
nomial for 3 x 3 matrices, 4 € M>*3

det(d — ) = —2* + (trd)/)* — (tradj4)A + det4 =0
and which reads
—A3 + (trd4)4*> — (tradj4)4 + (det4)1 = 0, (A1)

1 is the identity matrix. On the basis of these characteristics there are some relations between invariants and
the eigenvalues of the matrices:
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Lemma A.1 (Invariants). For all real diagonalizable A € M*** we set
Lii=tr(4) = + A+ 43,
I, :=tr(adjd) = 21 Ao + 7243 + 41 23,
I, :=detd = 2, /243.
Because of (A.1) this implies
(trF)* = tr (F?) + 2tr (adj F),
G4 do+ 4 =2+ B4+ 72 4200k + ks + a).

Lemma A.2 (Coeflicients of the characteristic polynomial). Let 4 be real diagonalizable and assume that
detd = 0. Then we have

I > 311,
I > 31,111,

Proof. The second binomial expression shows that 4,4, < (1/2)4 + (1 /2))»12. holds. Therefore A7 + /3 +
)3 = Mg 4 Jods + A3, Hence
(a + 0+ 23) = (05 + 25+ 23) + 2000 + Jada + Jala) = 3(ala + Jala + Jads)

which proves If1 > 3I1,. In order to prove the second statement note that we may assume /;(4) # 0 without
loss of generality since the statement is otherwise true anyway. Let therefore detA4 # 0. Then the in-
verse A~' € M**? exists and with the first statement we know I>_, > 3II%,. Moreover (AN = (1/2:(4)).
Therefore

(i+i+i>2>3< L, +L>,

M s M oy ey

(Alzz+zzz3+xlx3>2>3<z1+zz+zg>
A22A3 - I Aals ’

(Mda + Aads + 223)" = 300 + Jo + 43) - (Mads)

which is just 115 > 3L, 111,. O

In the proof of Lemma 2.2 we need some relationships between different invariants. These are shown in
the following:

Corollary A.3 (Estimates between ||F||, ||adjF|| and det F). Let F € M***. Then we have

IFI = 3vV3detF,

IF|I* = V3[adjF|,

ladj F||* = 3V/3(det F)*,
IF|I* = (FTF,1) < V3| FTF|.

Proof. Set C = FTF (right Cauchy-Green tensor). The symmetry of C ensures the applicability of the
preceding Lemma A.2. Thus
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L =u(F'F) = |F|’,
I, = tr(adj (F'F)) = tr (adj Fadj F") = |Jadj F|*,
11, = det(F'F) = (detF)’

and also
12 > 31l <= ||F|]* = V3||adj F]|,
112 > 3110l < |jadjF|* = V3| F| det F.

The last two lines lead directly to the second statement. The last statement is only a simple algebraic

estimate. O

Appendix B. Convexity

In order to understand polyconvexity, we start with some properties of convexity. In the following, one
can imagine that W symbolizes the strain-energy function, F the deformation gradient and C the matrix
representation of the right Cauchy-Green tensor.

Definition B.1 (Convexity). Let K be a convex set and let W : K — R. We say that W is convex if
WF + (1= 2)B) < AW (F) + (1 = )W (F)
for all Fi,F> € K and 2 € (0,1).

Note that in this definition it is necessary that the function 7 be defined on a convex set K.

Lemma B.2 (Second derivative and convexity). Let K be a convex set and let W : K — R be twice diffe-
rentiable. Then the following statements are equivalent:

1. W is convex,
2. D’W(F).(H,H) >0 VF € K,VH € Lin(K),

where Lin(K) is the linear hull of K.
Proof. See Rockafellar (1970, p. 27). O

Remark B.3. In order that W : K — R is convex, it is not sufficient to assume only
D*W(F).(H,H) =0

for all F € K,VH € K. Since, for example, with W (C) =detC, W : Sym"™ — R, we have K = Sym™" is a
convex set (cone) and

D*W(C).(H,H) = 2(C,adjH) > 0

for C,H € Sym™, but W(C) = det C is not convex.

If a function is given on C = FTF it is possible to relate convexity properties of a function defined on C
and the corresponding function defined on F.
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Lemma B.4 (Convexity on M*** and Sym™(3)). Let C € Sym*(3) and ¥ : Sym*(3) — R and assume that
Sor all H € Sym(3): (DX¥Y(C) - H,H) > 0 and Dc¥Y(C) € Sym{ (3). Then the function

WM - R, F—Y(F'F) (B.1)
is convex.
Proof. See Neff (2000). O

Lemma B.5 (Convexity of the square). Let P : R" — R be convex and P(Z) = 0. Then the function
ZeR"—E(Z)=P(Z)-P(Z) is convex.

Proof. First assume that P is a smooth function. The second differential of £(Z) = P(Z) - P(Z) is easy to
calculate. We get

DE(Z).H = P(Z) - DP(Z).H + DP(Z).H - P(Z),
D*E(Z).(H,H) =2(P(Z) - D*P(Z).(H,H) + DP(Z).H - DP(Z).H) > 0.

Hence E(Z) is convex. In the non-smooth case we proceed as follows:
E(AZ) + (1 = 2)Z) = P(AZ, + (1 = 2)Z>) - P(AZ, + (1 — 2)2s).
The assumed convexity of P shows that
P(AZy + (1 = M) Z,) < AP(Zy) + (1 — A)P(Z,).

Since the square function is a monotonically increasing function for positive values and by assumption
AP(Zy) + (1 — 2)P(Z,) is positive, we obtain the estimate

E(AZ + (1 = 2)Z,) < (AP(Z)) + (1 = 2)P(Z,))°.
However, since the square function is itself convex, we may proceed to write
E(Zi 4 (1 — 2)Zy) <APH(Z) + (1 — D)PX(Z,) = JE(Zy) + (1 — M)E(Z,).

The proof is complete. [

Corollary B.6. Let P : R" — R be convex and assume that P(Z) = 0. Then the function
ZeR P2, p>1
is convex.

Proof. The same ideas as before apply to this situation. [

Lemma B.7 (Convexity and monotone composition). Let P : R" — R be convex and let m : R — R be
convex and monotone increasing. Then the function R" — R, X —m(P(X)) is convex.

Proof. A direct check of the convexity condition. [
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Since we have products of different positive scalar functions—see, for example, the strain-energy function
(2.13)—it is useful to stress the non-convexity of mixed products in general. Let P, : R" - R, i = 1,2, be
convex and assume P; > 0. Then the functions

ZeR'-P(2)-PZ), p>1
are in general non-convex. x — x?(x — 1)2 and x — e'x*> may serve as simple examples. The function

(x,y) — x?y* may serve as an example where functions in different variables are convex and positive, but
their product is not convex.

Appendix C. Polyconvexity

In respect of the aforementioned observations of convexity, we define in this subsection polyconvexity
and relate it to ellipticity and quasi-convexity.

Definition C.1 (Polyconvexity). Let W € C*(M***,R) be a given scalar-valued energy density. We say that
F— W (F) is polyconvex if and only if there exists a function P : M*** x M*** x R — R (in general non-
unique) such that

W(F)=P(F,adjF,detF)
and the function R — R, (X,Y,Z)— P(X,Y,Z) is convex.

A consequence of this definition for a more restrictive class of energy densities is

Corollary C.2 (Additive polyconvex functions). Let W(F)= Wi(F)+ Ws(adjF) + Ws(detF). If the
Wi, i=1,...,3, are convex with respect to their arguments, then W is altogether polyconvex.

This corollary will be one of our main tools in constructing polyconvex strain energies: as we have seen
before in the main part of the article, we identify functions which are convex on M*** and R and then take
positive combinations of them. Let us now relate polyconvexity to quasi-convexity and ellipticity.

Definition C.3 (Quasi-convexity). We say that the elastic free energy W is quasi-convex whenever for ar-
bitrary Q C R and all F € M>*? and all v € C°(Q2) we have

W(F)-|Q\:/QW(F)dX< /QW(F—i—Vv(X))dX.

This means that the homogeneous solution V¢ = F of the homogeneous boundary-value problem
DivDrW(V¢) =0,
PoX)=FX +c

is automatically a global minimizer. It is clear that this condition is a non-local stability condition which is
difficult to handle. Every quasi-convex function is automatically elliptic.

Definition C.4 (Ellipticity). We say that
(1) Elastic free energy W € C*(M**3, R) leads to a uniformly elliptic equilibrium system whenever the so-
called uniform Legendre-Hadamard condition
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Jet > OVF e M¥P Ve ne R DIW(F).(E@n én) =c - ||1E nl
holds.
(2) W is strictly elliptic if and only if the strict Legendre-Hadamard condition
VEe M3 . VEneR . D2W(F).((@n,é@n) >0

holds.
(3) Elastic free energy W is strictly rank-one convex if the function f : R — R, (1) = W(F +t- ((®1n))
is strictly convex for all F € M** and all &, € R®.

Theorem C.5 (Rank one convexity and eigenvalues). Let W(F) = ®(11, Ay, A3), where @ is symmetric and the
Ai’s are the eigenvalues of the matrix representation of the right stretch tensor U = (F'F )1/ g If W is rank one
convex and ® € C*(R®) then

0’ R
FYEl (A1, 42,23) = 0.

Proof. This is Proposition 1.2 of Dacorogna (1989, p. 254). O

The decisive property in the context treated here is the following well known result.
Theorem C.6 (Polyconvexity implies ellipticity). Let the stored energy W be sufficiently smooth. Then, if W is
polyconvex, it is quasi-convex and elliptic. Moreover rank-one ellipticity and ellipticity are equivalent. Let W
be strictly elliptic. Then the Baker—FEricksen inequalities (see Baker and Ericksen, 1954; Marsden and

Hughes, 1983 ) are satisfied.

Proof. Standard result in the calculus of variations (see Dacorogna, 1989). We note that the reverse im-
plications are in general not true. [

Although we restrict our applications to purely isochoric terms, we study some more general expressions:

Lemma C.7 (Generic polyconvex terms). Let F € M**3. Then each of the following terms is polyconvex:

k

(tr (FTF))
M det(FTF)"*’ k=1
o EEGEP)

det(FTF)'?
Proof. (1) We consider the term

((FTF) |

det(FTF)'*  (det F)?*’

We have already shown (see Section 2.3.1) that the function P(x,y) = (1/x*) - y” is convex provided that
o =2/3 and p = 2k > 2. Now define a new function
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Bor T 5 7™
w(F,J) =P, |F|) = 2

Note that through the monotonicity of the 2kth power for positive arguments we have the inequality
14 + (1 = HB* < GIAI+ (1= DR (C.1)

It remains to check the convexity of W (F,J). To this end

~ ~ e ~ ~ . IR 4 (1 — A)B|*
W(OF + (1= 0)F A+ (1 —0)J) =POAJ + (1 =), || AF + (1 = D)B]|) =—= = .
(ZF 4 (1 = AR, Ay + (1 = 2)J2) = P(AJy + (1 = 2) o, (|2 + (1 = A)B|]) AEVAL

With (C.1) we have

(AIE] + (1= 2B
(AT + (1= D)J)*°

= P(iJi+ (1= D), AR + (1= W) |B]).

W(F + (1= B, 2, + (1= W) <

The convexity of P yields

W (R + (1= ), 20y + (1 = 2)12) <P ||R ) + (1 = )P, [|B)
=AW (R, J)) + (1 = )W (B, Ja).

The proof is completed in terms of the correct extension (2.16).
(2) Set

tr(adj (FTF))" _ [ladjF|™

det(FTF)'*  (detF)*?

and we proceed as in case 1. O

Other polyconvex functions are, for example, the following terms, which we call Generic exponential
polyconvex terms. For a given deformation gradient F € M**? each of the following terms is polyconvex:

[t (FTF)

(1) exp _W , k=1,
i - (T K

(2) exp tr(adi(F7F)). Flv)3) , 1.
| det(FTF)"

(3) exp(W(F)) if W(F) is polyconvex.

In view of the preceding Lemma each argument of the exponential is polyconvex. Since exp is convex and
monotonically increasing it preserves the underlying convexity. Hence the composition is polyconvex. Note,
however, that these functions alone are not stress-free in the reference configuration, i.e. we have to
combine them with other polyconvex functions in such a way that zero stresses are satisfied due to an
undeformed state.
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Appendix D. Coercivity
In order to propose a class of strain-energy functions satisfying an existence theorem, we start with

Definition D.1 (Coercivity). Let I(¢) be the elastic stored energy functional with the deformation ¢(X,¢).
We say that / is g-coercive whenever

1($) <K =[]l ,0<K,
where 9|, , is the Sobolev norm on the space W'4(Q).

In view of Section 3 we investigate the coercivity of a special energy which contains those terms already
proved to be polyconvex, see Corollary 2.3, and which yields a stress-free initial configuration in a natural

way.

Lemma D.2 (Coercivity of special energy). For J = det F and C = C/(det C)l/ > with C = FF let the elastic
stored energy density be given by

3
_ 5 v 7| _
W(F) —K<(detF) + (et F)’ 2> +a <(detF)2/3> 3

<J5 P 2) + a((tr6)3 _ 34 Zcm(tré —3) 4+ i:coj((tradjé)”z - 3\/5)/ (D.2)

5
J i=1 =1

with K, >0, ¢co20,i=1,...,m and cy; 20, j=1,...,n Then

6= [ wpax

is coercive for g = 4.

Proof.
q
1F)e g = | — s (det F)
(de ) 0
. . 1 1 N
|detF|"/3dX apply Youngs inequality, xy < —x* +—)", with —4+—=1
det F) (det F)'? a b a b
qa
1 F 1 3
- qb/3 alki _ > — ;
/(a th1/3 +b|detF| )dX taklnga—z,b—3ylelds
5 3q/2
— - — F|? f = 4 this sh
/ 3 detFl/3 +3|det || dX for ¢ this shows
ol F 1 ,
_/ 3 (det F) PPN +§\detC| dx
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3

2 I7|? 1 5

< il | — —(1+|detF]) | dx
/g 3\ (detF)*? +3( +[det )

2 1 1
< — 3 — —
< 3a1<¢)+3 3 I(¢)+2+3|Q|
2 1

1
< =+—= 219l
\<3a 3K>1(¢)+2+3 +3\Q|

Applying Poincaré’s inequality will complete the proof if Dirichlet boundary conditions are applied. [

The strain energy of type (D.1) or (D.2) respectively, contains the term o(- - -), o > 0, which is necessary to
guarantee the coercivity in conjunction with the chosen volumetric term, K(- - -), K > 0. Having proved the
coercivity and polyconvexity of the polynomial ansatz chosen, it is a standard matter to prove the existence
of a minimizer.

Theorem D.3 (Existence of minimizers). Let the reference configuration Q C R* be a bounded smooth domain
and let 0Q, be a part of the boundary 0Q with non-vanishing Lebesgue measure. Assume that
1(¢) = [, W(VP(X))dX with W as in (D.1). Let ¢y € W'*(Q) be given with I(¢,) < co. Then the problem

inf{](¢>) = /Q W(VH(X))dX, ¢(X) = do(X) for X € 0Qy, ¢ € W"“(Q)}

admits at least one solution. Formally, this solution corresponds to a solution of the boundary-value problem

Div D (V) = 0,
d)(X) = d)O(X)v X € 00.

Proof. It has been shown in Corollary 2.3 and Lemma D.2 that the energy (D.1) or (D.2) is polyconvex and
coercive on W'4(Q). Since I(¢p) = 0 and I(¢,) < oo the infimum exists and the direct methods of variation,
together with weak convergence, yield the existence of at least one minimizer. [
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