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Abstract

In this article we investigate several models contained in the literature in the case of near-incompressibility based on

invariants in terms of polyconvexity and coerciveness inequality, which are sufficient to guarantee the existence of a

solution. These models are due to Rivlin and Saunders, namely the generalized polynomial-type elasticity, and Arruda

and Boyce. The extension to near-incompressibility is usually carried out by an additive decomposition of the strain

energy into a volume-changing and a volume-preserving part, where the volume-changing part depends on the de-

terminant of the deformation gradient and the volume-preserving part on the invariants of the unimodular right

Cauchy–Green tensor. It will be shown that the Arruda–Boyce model satisfies the polyconvexity condition, whereas the

polynomial-type elasticity does not. Therefore, we propose a new class of strain-energy functions depending on in-

variants. Moreover, we focus our attention on the structure of further isotropic strain-energy functions.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Most solid materials show in the finite strain range nearly incompressible, i.e. weakly compressible

material behaviour. The constitutive models concerned usually utilize hyperelasticity relations which des-

cribe one part of the model. This is done in the case of rate-dependent and rate-independent constitutive
theories such as viscoelasticity, elastoplasticity or viscoplasticity. Naturally, the investigations below are

also of interest in the case of purely elastic material behaviour. In analytical derivations the weakly

compressible behaviour, which can be observed in most experiments, is replaced by the assumption of

incompressibility in order to obtain particular solutions. On the other hand, it is much more convenient in

the numerical treatment of these constitutive models, for example, utilizing the finite element method, to

employ the nearly incompressible extension. In this case there are three usually employed constitutive
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models in use, namely the generalized polynomial-type elasticity due to Rivlin and Saunders, the Arruda

and Boyce as well as Ogden�s model (Rivlin and Saunders, 1951; Arruda and Boyce, 1993; Ogden, 1972a).

The strain-energy functions concerned are originally formulated in the case of incompressibility as func-

tions of the first and second invariant or in eigenvalues of the left (or right) Cauchy–Green tensor. One way
of extending these models to the nearly incompressible case is to exchange the invariants or eigenvalues of

the original Cauchy–Green tensors, i.e. in the modified model one uses the unimodular part of the Cauchy–

Green tensors which are based on the multiplicative decomposition of the deformation gradient into a

volume-changing and a volume-preserving part. This decomposition goes back to Flory (1961). Further-

more, additional parts of the strain-energy function depend merely on the determinant of the deformation

gradient, i.e. the strain energy decomposes additively into two parts: one part depends on the volume-

changing part via the determinant of the deformation gradient and the other part on the invariants or

eigenvalues of the right Cauchy–Green tensor built up by the volume-preserving part of the deformation
gradient. This article discusses this modification of the models with respect to physical and mathematical

aspects.

A much debated question in the area of finite elasticity is the correct formulation of constitutive in-

equalities ensuring reasonable solutions to physical problems. Since we are focusing on hyperelastic ma-

terial behaviour these constitutive inequalities translate into conditions on the free energy. The so-called

Baker–Ericksen inequalities, the Coleman–Noll condition or Hill�s inequality may serve as examples for the

earlier attempts to establish these correct formulations. For a discussion on these inequalities see, for ex-

ample, Baker and Ericksen (1954), Marsden and Hughes (1983), Truesdell and Noll (1965), Wang and
Truesdell (1973), Hill (1970) and Ogden (1984). However, these inequalities could not be proved to

guarantee the well-posedness of the problem. Moreover, some criteria cannot be shown to be satisfied a

priori.

The mathematical treatment of the corresponding boundary-value problem (the structural mechanics

problem) is mainly based on the direct methods of variation, i.e. to find a minimizing deformation of the

elastic free energy subject to the specific boundary conditions. This minimizing deformation is found by

constructing infimizing sequences of deformations and then showing that the sequence converges in some

sense to the sought minimizer. The main ingredient for carrying out this program is a quasi-convexity
hypothesis on the free energy, Morrey (1952): roughly, it ensures that the functional to be minimized is

weakly lower semi-continuous. However, this condition is difficult to handle since it is a non-local integral

condition. A much more tractable condition has been introduced by Ball in his seminal article (Ball, 1977a),

it is the so-called polyconvexity condition. There exists a vast literature on polyconvexity (see e.g., Ball,

1977a,b; Marsden and Hughes, 1983; Ciarlet, 1988; Charrier et al., 1988 and the literature cited there) and

fortunately some energy expressions already introduced are covered by this concept (Ogden�s, Mooney-

Rivlin and Neo-Hookean model). For isochoric-volumetric decouplings some forms of polyconvex energies

have been proposed by Charrier et al. (1988) or Dacorogna (1989, p. 134 and pp. 256ff.). There are some
simple stored energies of St. Venant-Kirchhoff type (Ciarlet, 1988; Raoult, 1986) or energies involving the

so-called (logarithmic) Hencky tensor which, however, do not satisfy the polyconvexity condition (Neff,

2000). Moreover, it can be shown that neither St.Venant-Kirchhoff nor strain-energy functions based on

Hencky strains lead to elliptic equilibrium conditions.

It can be shown that polyconvexity of the stored energy implies that the corresponding acoustic tensor is

elliptic for all deformations whatsoever, moreover strict ellipticity is sufficient for the Baker–Ericksen in-

equalities to hold. The precise difference between the local property of ellipticity and quasi-convexity is still

an active field of research, since counterexamples exist which are elliptic throughout but not quasi-convex.
However, these examples are neither frame indifferent nor isotropic; from a purely mechanical point of view

this difference might be negligible. Polyconvexity as such does not conflict with the possible non-uniqueness

of equilibrium solutions, since it only guarantees the existence of at least one minimizing deformation. It is

possible that several metastable states (local equilibria) and several absolute minimizers exist, even so, one
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might conjecture that apart from trivial symmetries the absolute minimizer is unique, at least for the pure

Dirichlet boundary-value problem. In general, under polyconvexity assumptions, no claim can be made as

to the stability or smoothness of the solution, apart from the natural statement that the minimizer lies in the

Sobolev space considered. Moreover, it is not known that the minimizing deformation is a weak solution of
the local balance equation, due to possible singularities in the deformation gradient. We remark, following

(Ball, 1977a, p. 398) that polyconvexity implies the existence for all boundary conditions and body forces

which might be somewhat unrealistic. The conclusion that one particular form of the stored energy is not

polyconvex does not mean that this energy should be ruled out from the outset. Indeed, the corresponding

failure of ellipticity at large deformation gradients only (see the examples below) might be physically

correct, indicating, for example, the onset of fracture or some other local instability like the formation of

microstructure. On the other hand, the proof that some energy is elliptic for a reasonable range of de-

formation is presently not enough to establish an existence theorem. Since we will be concerned with nearly
incompressible isotropic hyperelasticity only where we expect neither fracture nor microstructure, the

polyconvexity assumption seems to be a convenient mathematical tool to ascertain the existence of a

minimizer of an elastic free energy.

Our main contribution consists of enlarging the class of known polyconvex energies including ex-

pressions which bear resemblance to the generalized polynomial-type elasticity relations due to Rivlin and

Saunders (1951), defined by modified invariants mentioned above. To our knowledge general polynomial

energy expressions like those of Rivlin and Saunders (1951) or Arruda and Boyce (1993) have not been

investigated with respect to polyconvexity. The polyconvexity conditions will then translate into a re-
quirement on the structure of the polynomial terms and the restriction to positive material parameters.

2. Strain-energy functions

We start with the multiplicative decomposition of the deformation gradient F ¼ Grad~//ð~XX ; tÞ of a ma-

terial point ~XX at time t into a volume-changing and a volume-preserving part

F ¼ bFF F: ð2:1Þ

~xx ¼ ~//ð~XX ; tÞ denotes the deformation. Bold-face roman letters denote tensorial quantities. The volume-

preserving part

F ¼ J�1=3F; detF ¼ 1; ð2:2Þ
J � det F, and the volume-changing part bFF ¼ J 1=3I, are used to define unimodular left and right Cauchy–

Green tensors

C ¼ F
T
F; B ¼ FF

T
; ð2:3Þ

detC ¼ detB ¼ 1, which can be expressed by the original Cauchy–Green tensors C ¼ FTF and B ¼ FFT via

C ¼ J�2=3C and B ¼ J�2=3B: ð2:4Þ
Now, we define the two sets of invariants

IC ¼ trC; IIC ¼ 1
2
ðtrCÞ2
�

� trC2
�
; IIIB ¼ det C ð2:5Þ

and

IC ¼ trC; IIC ¼ 1
2
ðtrCÞ2
�

� trC
2
�
¼ trC

�1 ¼ tradjC: ð2:6Þ
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Eq. (2.6)2 becomes obvious in view of the evaluation of condition detC ¼ 1 and Cayley-Hamilton�s theo-
rem, see Eq. (A.1) of Appendix A. adjA ¼ ðdet AÞA�1 denotes the adjugate and trA ¼ aii defines the trace
of a second order tensor.

In order to obtain a basic representation with respect to the polyconvexity condition, we must express the
invariants by the deformation gradient F, by the determinant J and by the adjugate adjF ¼ ðdet FÞF�1:

IBðJ ;FÞ ¼
kFk2

ðdet FÞ2=3
; IIBðJ ; adjFÞ ¼

kadjFk2

ðdet FÞ4=3
; ð2:7Þ

kFk2 defines the scalar product of the deformation gradient, kFk2 ¼ hF;Fi.
In the following, we study some frequently used strain-energy functions in the cases of incompressibility

and their extension to near-incompressibility in view of the existence of the solutions (polyconvexity and

coerciveness). Furthermore, we develop a new class of models satisfying mathematical requirements in

particular.

2.1. Incompressibility

During the past decades three models of strain-energy functions for hyperelastic solid materials have

usually been preferred in finite element applications, namely the models of Rivlin and Saunders (1951),

Arruda and Boyce (1993) as well as Ogden (1972a). In the case of incompressibility these models comply

with the representation shown in Table 1.

The model of Rivlin and Saunders represents a class of various models depending on the maximum order

m and n as well as the material parameters cij ¼ 0, which are prescribed in advance. For instance, m ¼ n ¼ 1
and c00 ¼ c11 ¼ 0 defines the classical Mooney-Rivlin model. In Hartmann (2001a,b) a variety of these

models are summarized and studied with respect to identification of the material parameters cij, in par-

ticular their sensitivity with regard to the identification as well as requirements for the material parameters

to ensure physically plausible curves. It is shown that for non-negative material parameters the well-known

non-monotonous stress–strain curves in simple tension, biaxial tension, simple shear and tension–torsion

tests cannot occur. For deformation processes mentioned before the identification of the material

parameters leads to a linear least-square problem with non-negative solutions (cij P 0) which is simple to

treat.
The Arruda and Boyce model is motivated by considerations on the microlevel and leads to two material

parameters c and N which have to be positive in view of physical considerations. The factors di are fixed

numbers defined a priori (they result from a Taylor expansion of the Langevin function). Obviously, the

model is independent of the second invariant. The identification of material parameters leads to a non-

linear least-square problem with a positive solution (c > 0, N > 0). Parameter identification is discussed, for

example, by Przybylo and Arruda (1998) or Seibert and Sch€ooche (2000).

Table 1

Strain-energy functions for incompressible hyperelastic materials

Rivlin/Saunders wRSðIC; IICÞ ¼
Pm

i¼0

Pn
j¼0 cijðIC � 3ÞiðIIC � 3Þj

ŵwRSðF;F�1Þ ¼
Pm

i¼0

Pn
j¼0 cijðkFk2 � 3ÞiðkF�1k2 � 3Þj

Arruda/Boyce wABðICÞ ¼ c
Pm

i¼1 diN
1�iðIiC � 3iÞ

ŵwABðFÞ ¼ c
Pm

i¼1 diN
1�iðkFk2i � 3iÞ

Ogden wOðl1;l2;l3Þ ¼
Pm

i¼1
ci
ai
ðlai=2

1 þ lai=2
2 þ lai=2

3 � 3Þ
ŵwOðk1; k2; k3Þ ¼

Pm
i¼1

ci
ai
ðkai

1 þ kai
2 þ kai

3 � 3Þ
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The Ogden model depends on the eigenvalues li of the right Cauchy–Green tensor, C ¼
P3

i¼1 li~uui 
~uui, or
on the eigenvalues ki ¼

ffiffiffiffi
li

p
of the right or left stretch tensors U ¼

P3

i¼1 ki~uui 
~uui or V ¼
P3

i¼1 ki~vvi 
~vvi (see
Table 1), which result from the polar decomposition of the deformation gradient, F ¼ RU ¼ VR. RT ¼ R�1

denotes the rotation tensor and~uui and~vvi the eigenvectors of the right and left stretch tensors U and V. In

order to satisfy incompressibility, l3 ¼ ðl1l2Þ
�1

must hold. ci and ai represent material parameters. They
should satisfy the inequalities ciai > 0 (no sum over i) so that the constitutive model satisfies Hill�s sta-

bility criteria to give physically plausible curves (Ogden, 1972a). According to Ciarlet (1988) the material

parameters have to satisfy the conditions ci > 0 and ai P 1 in order to ensure polyconvexity and the co-

erciveness inequality, which is a stronger assumption in view of the range of the material parameters.

Obviously, it fulfils Hill�s stability criteria as well (Hill, 1970). The constitutive model is motivated for n ¼ 2

by physical considerations on the microlevel by Kaliske and Heinrich (1999).

The identification of the material parameters of the Ogden model has been carried out by Twizell and

Ogden (1983), Benjeddou et al. (1993), Gendy and Saleeb (2000), Przybylo and Arruda (1998) as well as
Smeulders and Govindjee (1998). The identification leads to a non-linear least-square problem with non-

linear inequality constraints. However, only a few of the aforementioned articles incorporate the inequality

constraints of the material parameters. The number of Ogden terms is chosen with m6 4 at a maximum.

2.2. Weak compressibility

Usually the extension to nearly incompressible material behaviour is modelled using the multiplicative

decomposition of the deformation gradient (2.1) into volume-preserving and volume-changing parts.
Furthermore, it is assumed that the strain-energy function consists of two parts

wðJ ; I
C
; II

C
Þ ¼ UðJÞ þ wðI

C
; II

C
Þ ð2:8Þ

or

ŵwðJ ;F; adjFÞ ¼ UðJÞ þ ŵwðJ ;F; adjFÞ ð2:9Þ
so that the resulting stress state decomposes into a pure hydrostatic and a pure deviatoric part, see Eq.
(3.14). The strain-energy functions in Table 1 are usually modified by exchanging the tensorial quantities,

here the right Cauchy–Green tensor C, with the unimodular tensor (2.4),

wRSðIC; IICÞ ¼
Xm
i¼0

Xn
j¼0

cijðIC � 3ÞiðIIC � 3Þj; ð2:10Þ

wABðICÞ ¼ c
Xm
i¼1

diN 1�iðIi
C
� 3iÞ; ð2:11Þ

wOðl1; l2; l3Þ ¼
Xm
i¼1

ci
ai
ðlai=2

1 þ lai=2
2 þ lai=2

3 � 3Þ; l3 ¼ ðl1l2Þ
�1 ð2:12Þ

or expressed in the variables ðJ ;F; adjFÞ

ŵwRSðJ ;F; adjFÞ ¼
Xm
i¼0

Xn
j¼0

cijðJ�2=3kFk2 � 3ÞiðJ�4=3kadjFk2 � 3Þj; ð2:13Þ

ŵwABðJ ;FÞ ¼ c
Xm
i¼1

diN 1�i J�2i=3kFk2i
�

� 3i
�
; ð2:14Þ
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ŵwOðk1; k2; k3Þ ¼
Xm
i¼1

ci
ai
ðkai

1 þ k
ai
2 þ k

ai
3 � 3Þ; k3 ¼ ðk1k2Þ�1

; ð2:15Þ

respectively.

In the literature the strain-energy function UðJÞ is assumed to satisfy the physically plausible conditions

Uð1Þ ¼ 0, UðJÞjJ!0 ¼ þ1 and UðJÞjJ!þ1 ¼ þ1. In Ehlers and Eipper (1998) ansatz (2.15) has been in-

vestigated. For simple tension tests they have shown that in the case of a determinant of the deformations
gradient J , which is not close to one, non-physical behaviour of the models may occur. However, the reason

for this and the desired a priori exclusion of these phenomena constitute an open problem. We look at these

phenomena in Section 3.

2.3. Polyconvexity condition

In this part of the paper we investigate the polyconvexity conditions alluded to above and investigate the
strain energies (2.13) and (2.14). Furthermore, new strain energy functions are proposed allowing for a

proof of the existence of a solution of boundary-value problems. The modification in view of the isochoric

and volumetric split of Ogden�s strain-energy function (2.15) has already been investigated in terms of the

existence of a solution (Charrier et al., 1988). Therefore, we restrict ourselves to the investigation of the

special formulation using these isochoric invariants.

Whereas the whole formalism derived up to now could be based on considerations pertaining to the right

Cauchy–Green tensor C ¼ FTF, the investigation of the polyconvexity condition is directly based on ex-

pressions defined on the deformation gradient F. Therefore, in this subsection we use the deformation
gradient F and the quantities adjF and det F, i.e. the formulations (2.13) and (2.14).

Because the polyconvexity condition is connected to convexity, quasi-convexity and ellipticity, we have

summarized the essential mathematical definitions in Appendices B and C, so that a self-explanatory text is

obtained.

Since the following considerations are independent of the metric, we choose for simplicity a direct matrix

notation. In this case we omit bold-face notation for the sake of easier readability. For a; b 2 R3 we let

ha; biR3 ¼ aTb ¼ bTa symbolizing the scalar product on R3 with the norm kak2R3 ¼ ha; aiR3 ¼ aTa. Fur-
thermore, M3�3 denotes the set of real 3� 3 matrices. Here, the standard Euclidean scalar product on M3�3

is given by hA;Bi ¼ tr ðABTÞ ¼ tr ðATBÞ with tr the trace operator and we have the norm kAk2R3 ¼ hA;Ai. For
brevity we omit in the following the indices R3 and M3�3. adjA denotes the adjugate matrix, i.e. the matrix

of transposed cofactors cof A such that adjA ¼ ðdetAÞA�1 ¼ ðcof AÞT if A 2 GLð3;RÞ, where GLð3;RÞ is

the set of invertible 3� 3 matrices. The identity matrix on M3�3 will be denoted by 1 so that trA ¼ hA; 1i
holds. A lower dot in a ¼ A:b symbolizes the application of A 2 M3�3 onto b 2 R3 yielding the vector

a 2 R3. Furthermore, we need the first and second Fr�eechet derivatives Df ðAÞ:H and D2f ðAÞ:ðH ;HÞ. Sub-
sequently, we need the sets Sym and Symþ denoting the sets of symmetric and symmetric positive definite

3� 3 matrices, respectively.
First of all, we emphasize the property of unimodularity for C ¼ F

T
F , namely detC ¼ 1 with C in Eq.

(2.4). Since we intend to investigate strain energies of the form

W ðF Þ ¼ Uðdet F Þ þ Wiso

F TF

ðdet F TF Þ1=3

 !
;

i.e. the free energy decomposes additively into two terms resulting from purely isochoric and volumetric

deformations. We will show that this ansatz is compatible, under certain circumstances, with the re-

quirement of polyconvexity. To this end, we first study the isochoric part of the strain energy function and
then we focus our attention to the (simpler) volumetric part.
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2.3.1. Isochoric part of the strain energy function

Let us start with a preliminary clarification since the determinant of the deformation gradient has to be

assumed to be positive. Let, for example, W1ðAÞ ¼ hA; 1i, and define

iso ðF Þ � C ¼ F TF

ðdetðF TF ÞÞ1=3
:

Then

Wiso

F TF

ðdetðF TF ÞÞ1=3

 !
¼ W1ðiso ðF ÞÞ ¼

kF k2

ðdet F Þ2=3
det F > 0;

1 det F 6 0

(
and W ðF Þ ¼ W1ðiso ðF ÞÞ is a polyconvex function (however, not of the additive type, Corollary C.2). For

the remainder let us agree to extend functions W which are naturally only defined on the set det F > 0 to

M3�3 by setting W ¼ 1 for arguments with det F 6 0. With such an extension it is clear that W can never be

convex, for it is supported on a non-convex set only. However, this extension is compatible with the re-

quirement of polyconvexity since

P ðxÞ ¼ f ðxÞ x > 0;
1 x6 0



ð2:16Þ

is a convex function whenever f is convex on Rþ.

In the following, we state several lemmas. The first one is connected to the basic invariant I
C
. The second

one studies generalized polyconvex strain energy terms, which are followed by two essential terms satisfying

a stress-free reference configuration. Lastly, we show that in the case of the generalized polynomial-type

elasticity (2.13) for various terms ellipticity may be lost and an existence proof based on our methods

cannot be given.

We start with the investigation of strain energy functions depending on the first invariant IC of uni-

modular right Cauchy tensor C, here expressed by the deformation gradient F:

Lemma 2.1 (Isochoric terms). Let the strain energy be of the type W ðF Þ ¼ kF k2=ðdet F Þ2=3. Then W is

polyconvex.

This can be proved as follows:

Proof. First, we investigate the convexity of the function P : Rþ � R ! R, P ðx; yÞ ¼ f ðxÞgðyÞ. The matrix

of second derivatives is of course

D2P ðx; yÞ ¼ f 00ðxÞgðyÞ f 0ðxÞg0ðyÞ
f 0ðxÞg0ðyÞ f ðxÞg00ðyÞ

� �
:

If f ; g are positive, smooth and convex, then we have f 00ðxÞgðyÞP 0 and detD2P ðx; yÞ ¼
f 00ðxÞgðyÞf ðxÞg00ðyÞ � ðf 0ðxÞg0ðxÞÞ2. Note that P is convex, if D2P is positive definite by Lemma B.2. In our

situation D2P is positive definite if f 00ðxÞ � gðyÞP 0 and detD2Pðx; yÞP 0. Thus we must guarantee that

f 00ðxÞgðyÞf ðxÞg00ðyÞP ðf 0ðxÞg0ðxÞÞ2.
Let a > 0 and pP 2. We choose f ðxÞ ¼ x�a and gðyÞ ¼ y p. Then

f 00ðxÞgðyÞf ðxÞg00ðyÞ ¼ aða þ 1Þx�ð2þaÞy px�apðp � 1Þy p�2

and

ðf 0ðxÞg0ðxÞÞ2 ¼ ð�ax�ðaþ1Þpy p�1Þ2 ¼ a2x�2ðaþ1Þp2y2ð p�1Þ:
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We arrive at the condition that

a þ 1

a
P

p
p � 1

:

The larger one chooses p, the better for the choice of a. Notably, P ðx; yÞ ¼ ð1=xaÞ � y p is convex for
a ¼ 2=3 and p ¼ 2. We set

bWW ðF ; eJJ Þ ¼ P ðeJJ ; kF kÞ ¼ kF k2eJJ 2=3
:

We check the convexity of bWW ðF ; eJJ Þ. Thus
bWW ðkF1 þ ð1� kÞF2; keJJ1 þ ð1� kÞeJJ2Þ ¼ P ðkeJJ1 þ ð1� kÞeJJ2; kkF1 þ ð1� kÞF2kÞ ¼

kkF1 þ ð1� kÞF2k2

ðkeJJ1 þ ð1� kÞeJJ2Þ2=3
and the monotonicity of the square for positive arguments yields

bWW ðkF1 þ ð1� kÞF2; keJJ1 þ ð1� kÞeJJ2Þ6 kkF1k þ ð1� kÞkF2kð Þ2

ðkeJJ1 þ ð1� kÞeJJ2Þ2=3
¼ P ðkeJJ1 þ ð1� kÞeJJ2; kkF1k þ ð1� kÞkF2kÞ:

Since by assumption P is convex, we obtainbWW ðkF1 þ ð1� kÞF2; keJJ1 þ ð1� kÞeJJ2Þ6 kP ðeJJ1; kF1kÞ þ ð1� kÞP ðeJJ2; kF2kÞ
¼ k bWW ðF1; eJJ1Þ þ ð1� kÞ bWW ðF2; eJJ2Þ:

Now recall the extension of W to all of M3�3 and use (2.16). Thus we have shown that bWW is convex on the

convex set M3�3 � Rþ and convexly extended to M3�3 � R. The proof is complete. For a proof also
compare with Charrier et al. (1988) or Dacorogna (1989, p. 140). �

Since we are interested in the investigation of the modified generalized polynomial-type elasticity (2.10)

or (2.13), respectively, we look at the following specific terms:

Lemma 2.2 (Special polyconvex terms). Let F 2 M3�3. Then each of the following terms is polyconvex:

ð1Þ F 7! kF k2

ðdet F Þ2=3

 
� 3

!i

¼ ðtrC � 3Þi; iP 1:

ð2Þ F 7! kadjF k3

ðdet F Þ2

 
� 3

ffiffiffi
3

p
!j

¼ ððtradjCÞ3=2 � 3
ffiffiffi
3

p
Þj; jP 1:

Proof

(1) We have already checked in Lemma 2.1 that the expression kF k2=ðdet F Þ2=3 is polyconvex, hence

there exists a convex function PðF ; det F Þ ¼ kF k2=ðdet F Þ2=3. Note that in view of the estimates for the
invariants Corollary A.3 of Appendix A we know that P ðF ; det F Þ � 3P 0. We define the function

½a�þ ¼ maxfa; 0g. Note that x 7! maxff ðxÞ; 0g is convex if f is convex. Then
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kF k2

ðdet F Þ2=3

 
� 3

!i

¼ ½P ðF ; det F Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
X2R10

�3�iþ:

P is convex in F and x! xi; iP 1, is monotonically increasing for positive values and convex, hence

½PðX Þ � 3�iþ is altogether convex in X which is however the polyconvexity of F 7! ½P ðF ; det F Þ � 3�iþ. Since
this last expression coincides with

kF k2

ðdet F Þ2=3

 
� 3

!i

the polyconvexity is proved.

(2) We know already that ðkadjF k3=ðdet F Þ2Þ � 3
ffiffiffi
3

p
is polyconvex since the exponents verify the decisive

inequality ða þ 1Þ=a P p=ðp � 1Þ. Moreover, ðkadjF k3=ðdet F Þ2Þ � 3
ffiffiffi
3

p
P 0 with Lemma A.3. Exactly the

same reasoning applies now as before. �

A generalization of the above mentioned strain energy functions yield the more general class of isochoric

strain energy terms by the following corollary.

Corollary 2.3. Let F 2 M3�3. Then each of the following more general terms is polyconvex:

ð1Þ F 7! kF k2k

ðdet F Þ2k=3

 
� 3k

!i

; iP 1; kP 1:

ð2Þ F 7! kadjF k3k

ðdet F Þ2k

 
� ð3

ffiffiffi
3

p
Þk
!j

; jP 1; kP 1:

ð3Þ F 7! exp
kF k2k

ðdet F Þ2k=3

 "
� 3k

!i#
� 1; iP 1; kP 1:

ð4Þ F 7! exp
kadjF k3k

ðdet F Þ2k

 "
� ð3

ffiffiffi
3

p
Þk
!j#

� 1; jP 1; kP 1:

In order to prove the aforementioned corollary one has to apply the same ideas as before and note that

exp is a convex monotonically increasing function, so we may apply Lemma B.7.
Since we are interested in the generalized polynomial-type elasticity, we look at the terms of the second

invariant II
C
¼ J�4=3kadjFk2 in Eq. (2.10) or (2.13). These terms are not polyconvex, i.e. the existence of a

solution of a boundary-value problem cannot be guaranteed:

Lemma 2.4 (Non-ellipticity of mixed terms). The following terms are non-elliptic hence not polyconvex:

W ðF Þ ¼ kF k2

ðdet F Þ2=3

 
� 3

!i
kadjF k3

ðdet F Þ2

 
� 3

ffiffiffi
3

p
!j

; i; jP 1:
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Moreover, the term

F 7! kadjF k2

ðdet F Þ4=3

 
� 3

!i

; iP 1

is non-elliptic, hence it cannot be polyconvex, even so ðkadjF k2=ðdet F Þ4=3Þ � 3P 0 in the light of Corollary

A.3. Here the term kadjF k2=ðdet F Þ4=3 itself does not have the right exponents for polyconvexity (Charrier

et al., 1988).

Proof. We let i; j ¼ 1 and consider the eigenvalue representation of W ðF Þ:

W ðF Þ ¼ k2
1 þ k2

2 þ k2
3

ðk1k2k3Þ2=3

 
� 3

!i
½ðk1k2Þ2 þ ðk2k3Þ2 þ ðk1k3Þ2�3=2

ðk1k2k3Þ2

 
� 3

ffiffiffi
3

p
!j

¼ Uðk1; k2; k3Þ:

We take a deformation with deformation gradient F ¼ diag ð0:1; 10; tÞ with t 2 Rþ. If W ðF Þ is rank-one
convex, then

Uð0:1; 10; tÞ ¼ 100:01þ t2

t2=3

�
� 3

�i ½1þ 100:01t2�3=2

t2

 
� 3

ffiffiffi
3

p
!j

should be convex, according to Theorem C.5. However, this is not the case, as can easily be verified.

Typically, convexity in t (hence ellipticity with respect to F ) is lost for extreme deformations only. �

Table 2 summarizes new classes of polyconvex strain energy functions in terms of tensorial quantities and
in respect to the decomposition into isochoric and volumetric parts.

Lemma 2.4 has shown that the modified generalized polynomial-type elasticity cannot be polyconvex as a

result of the choice of the terms ðIIC � 3Þj. If we modify these strain-energy functions into II
3=2

C
� 3

ffiffiffi
3

p
––see

Corollary 2.3, proposal 2, in the case of k ¼ 1––polyconvexity is only sati2sfied if products

ðIIC � 3ÞiðII3=2
C

� 3
ffiffiffi
3

p
Þj do not occur, i.e. the first and second invariant are decoupled, see Lemma 2.4 as

well. Furthermore, we point out in view of Corollary 2.3, proposal 1, that in the case of i ¼ 1 the isochoric

part of the strain energy of Arruda and Boyce is polyconvex.

2.3.2. Volumetric part of the strain-energy function

The volumetric part of the strain energy function UðJÞ in ansatz (2.8) or (2.9) has merely to be convex in

the variable J ¼ det F. In Table 3 various new convex strain energy functions are proposed. Of course, they

have to be modified in order to satisfy the requirement of a stress-free reference configuration.

In the framework of the finite element method one mostly uses one term of the volumetric strain energy,

UðJÞ ¼ K bUU ðJÞ, where K represents the compression modulus and bUU ðJÞ the principle function of the de-

terminant J . From the physical point of view we should fulfill a energy- and stress-free reference confi-

guration Uð1Þ ¼ 0 and U 0ð1Þ ¼ 0. In the case of U 00ð1Þ ¼ K, i.e. bUU 00ð1Þ ¼ 1, K can be interpreted as the
compression modulus of linear elasticity. The convexity requirement implies UðJÞ ! 1 for J ! 0 and

Table 2

Polyconvex isochoric strain energy terms

u1ðICÞ � Ik
C
� 3k

� �i iP 1, kP 1

u2ðIICÞ � II
3k=2

C
� ð3

ffiffiffi
3

p
Þk

� �j
jP 1, kP 1

u3ðu1ðICÞÞ � expðu1ðICÞÞ � 1 iP 1, kP 1

u4ðu2ðICÞÞ � expðu2ðIICÞÞ � 1 jP 1, kP 1
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J ! 1 as well as U 00ðJÞP 0, so that a volumetric compression or stretch yields hydrostatic pressure or
tension. In Table 4 models of the literature are summarized. Model 11 is a particular version of the first

proposal of Table 2 for k ¼ 1 and p ¼ 5=2, which is used in the forthcoming section.

Figs. 1 and 2 show the behaviour of the models 1–3, 5, 6, 8, 9 as well as 11 in the region 0 < J 6 5. Model

1 represents a linear approximation of hydrostatic stresses and is included in the generalized form, no. 1, in

Table 3, ðtrTÞ=3 ¼ U 0ðJÞ, see Eq. (3.14). However, model 1 has a finite limit in the case of

limJ!0
bUU ðJÞ ¼ 1=2 or limJ!0

bUU 0ðJÞ ¼ �1, which is not plausible for higher volumetric deformations. The

Table 3

New convex isochoric strain energy functions

ðJ 2p þ J�2p � 2Þk pP 1=2, kP 1

ðJ � 1Þk k > 1

J 2 � 2 ln J þ 4ðln JÞ2

Table 4

Volumetric strain energy functions of the literaturebUU ðJÞ bUU 0ðJÞ bUU 00ðJÞ Reference

1. 1
2
ðJ � 1Þ2 J � 1 1

2. 1
4

ðJ � 1Þ2 þ ðln JÞ2
� �

1
2
J � 1þ 1

J ln J
� �

1
2J2 ð1þ J 2 � ln JÞ Simo and Taylor (1982)

3. 1
2
ðln JÞ2 1

J ln J
1
J2 ð1� ln JÞ Simo et al. (1985)

4. 1

b2
1
Jb � 1þ b ln J
� �

1
b

1
J � 1

J1þb

� �
1
b

1
J2þb ð1þ b � J bÞ
� �

Ogden (1972b)

5. 1
4
J 2 � 1� 2 ln Jð Þ 1

2
J � 1

J

� �
1
2
1þ 1

J2

� �
Simo and Taylor (1991)

6. J � ln J � 1 1� 1
J

1
J2 Miehe (1994)

7. Jbðb ln J � 1Þ þ 1 b2 1
J1�b ln J b2Jb�2ð1þ ðb � 1Þ ln JÞ Hartmann (2002)

8. J ln J � J þ 1 ln J 1
J Liu et al. (1994)

9. 1
32
ðJ 2 � J�2Þ2 1

8
J 3 � 1

J5

� �
1
8
5 1
J6 þ 3J 2

� �
ANSYS (2000)

10. J
b 1� J�b

1�b

� �
þ 1

b�1
1
b 1� J�bð Þ J�ð1þbÞ Murnaghan (1951, S. 68)

11. 1
50
J 5 þ J�5 � 2ð Þ 1

10
J 4 � J�6ð Þ 1

10
4J 4 þ 6J�7ð Þ

0

1

2

3

4

5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

model 1
model 2
model 3
model 5
model 6
model 8
model 9

model 11

Fig. 1. Behaviour of the strain energy functions in Table 4.

S. Hartmann, P. Neff / International Journal of Solids and Structures 40 (2003) 2767–2791 2777



extension by the natural logarithm in model 2 corrects this characteristic. If one uses only the correction

term, see model 3, convexity is violated for J > e ¼ 2:718 . . ., i.e. bUU 00ðJÞ < 0. Fig. 2 shows a decreasing
stress curve during volumetric tension. Models 5 and 6 are included in Ogden�s model, here model 4 for

b ¼ �2 and b ¼ �1. The case b ¼ 1 is applied in Ehlers and Eipper (1998). Model 8 is, however, incor-

porated for b ¼ 1 in model 7. Obviously, convexity is not satisfied for all b in model 7. In this work we have

modified models 8 and 9 in view of the original literature in order to satisfy condition bUU 00ð1Þ ¼ 1. Model 10

of Murnaghan (1951, S. 68) is originally developed in terms of hydrostatic pressure. Here, we developed the

strain-energy concerned by integration. Our proposal of model 11 has some advantageous properties in

view of physical plausible tensile tests, see later.

3. Investigation of the proposed strain-energy function

The aforementioned mathematical studies lead, for example, to the polyconvex strain energy

wðJ ; IC; IICÞ ¼ UðJÞ þ wðIC; IICÞ ð3:1Þ

with

UðJÞ ¼ K
50

ðJ 5 þ J�5 � 2Þ; ð3:2Þ

wðIC; IICÞ ¼ aðI3
C
� 33Þ þ

Xm
i¼1

ci0ðIC � 3Þi þ
Xn
j¼1

c0jðII3=2
C

� 3
ffiffiffi
3

p
Þj ð3:3Þ

which satisfies coercivity as well (see Appendix D).

Remark 1. A further mathematical notion is called ‘‘coercivity’’. Coercivity is a condition imposed on the

growth of the strain energy for deformation gradients in the range of finite deformations. It is a necessary

part of the existence proof via the direct methods of variations. For additional comments see Ciarlet (1988).
A concrete strain energy formulation, which satisfies this condition as well, is given in Eqs. (3.2) and (3.3).

The proof of its coercivity is given in Appendix D.

-10

-5

0

5

10

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

model 1
model 2
model 3
model 5
model 6
model 8
model 9

model 11

Fig. 2. Behaviour of the hydrostatic stresses in view of the volumetric strain energy functions of Table 4.
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First of all, we have to mention the problem of material parameter identification. Since not all defor-

mations for compressible solids yield analytical solutions, the identification problem for the strain energy

(3.1) is non-linear––see, for example, equation system (3.22). If the compressible part of the strain energy is

only chosen with a view to improving the numerical calculations by means of the finite element method and
the material under investigation is very close to the incompressible case, then the parameter estimation can

be carried out by identifying the parameters a > 0, ci0 P 0, i ¼ 1; . . . ;m, and c0j P 0, j ¼ 1; . . . ;m, using the

assumption of incompressibility. This yields in the cases of simple tension, pure and simple shear, biaxial

tension and combined tension–torsion tests analytical solutions which are linear in the material parameters.

In this case one has to apply a linear least-square method with non-negative solutions (see e.g., Hartmann,

2001a,b). Here, we have to emphasize that during the identification process the material parameter a has to

be different to zero in order to satisfy the coerciveness inequality.

Here, we choose one of the simplest constitutive models with UðJÞ of Eq. (3.2) and with m ¼ n ¼ 1 of Eq.
(3.3),

wðIC; IICÞ ¼ aðI3
C
� 27Þ þ c10ðIC � 3Þ þ c01ðII3=2

C
� 3

ffiffiffi
3

p
Þ; ð3:4Þ

i.e. we are interested in the identification of the material parameters a, c10 and c01. For the identification

process we use the experimental data of Haupt and Sedlan (2001) of a tension, a pure torsion and two

combined tension–torsion tests applying a particular weighting technique, see Hartmann (2001b). This

yields the material parameters a ¼ 0:00367 MPa, c01 ¼ 0:1958 MPa and c10 ¼ 0:1788 MPa. Then we obtain

the S-shaped curve in a uniaxial tension-compression diagram (see Fig. 3).

For these material parameters, we later discuss the behaviour of the model in the nearly incompressible

case. To this end, we consider in a first step the general stress state which is calculated as follows: the second
Piola–Kirchhoff tensor eTT is defined by

eTT ¼ 2
dw
dC

¼ 2
dUððdet CÞ1=2Þ

dC

 
þ dwðCðCÞÞ

dC

!
: ð3:5Þ

The derivative dU=dC is given by

dUððdet CÞ1=2Þ
dC

¼ 1

2
JU 0ðJÞC�1; ð3:6Þ

-400

-200

0

200

400

600

800

1000

0.5 1 1.5 2 2.5 3

model
test data

Fig. 3. Uniaxial stress-stretch behaviour (incompressibility).
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where we make use of J ¼ ðdet CÞ1=2. The derivative dw=dC is calculated by means of

dwðCðCÞÞ
dC

¼ dC

dC

� �T
dw

dC
ð3:7Þ

with

dC

dC

� �T
¼ ðdet CÞ�1=3

I

�
� 1

3
ðC�1 
 CÞ

�
¼ J�2=3 I

�
� 1

3
ðC�1 
 CÞ

�
: ð3:8Þ

I denotes the fourth-order identity tensor, IA ¼ A. Obviously, C�1 
 C ¼ C
�1 
 C holds. Since we have

the particular dependence of the invariants, the derivative dw=dC results from the chain rule

dw

dC
¼ ow

oIC

dI
C

dC
þ ow
oIIC

dII
C

dC
¼ ðw1 þ w2ICÞI � w2C ð3:9Þ

with

w1ðIC; IICÞ ¼
ow
oIC

¼ 3aI2
C
þ
Xm
i¼1

ci0iðIC � 3Þi�1 ð3:10Þ

and

w2ðIC; IICÞ ¼
ow
oII

C

¼
Xn
j¼1

c0jj
3

2
II

1=2

C
ðII3=2

C
� 3

ffiffiffi
3

p
Þj�1

: ð3:11Þ

Now, we arrive at two parts of the stress state:eTT ¼ eTTvol þ eTT iso ð3:12Þ

¼ JU 0ðJÞC�1 þ 2J�2=3 ðw1

�
þ w2ICÞI � w2C � 1

3
ðw1IC þ 2w2IICÞC

�1
�
: ð3:13Þ

Additionally, we remark that the push-forward of the second Piola–Kirchhoff tensor to the current

configuration, represented by the Cauchy stress tensor T ¼ J�1FeTTFT, leads to

T ¼ U 0ðJÞI þ 2

J
dw

dB
B

� �D
; ð3:14Þ

where it becomes obvious that the decomposition of the strain-energy function yields in a natural way

purely hydrostatic and pure deviatoric stress states caused by the specific form of the strain-energy function.

The superscript D symbolizes the deviator operator, AD ¼ A � ð1=3ÞðtrAÞI.
The tangent operator concerned

eCC ¼ 4
d2w

dCdC
¼ 2

deTT
dC

¼ eCCvol þ eCCiso ð3:15Þ

which decomposes additively into a volumetric and an isochoric part, has the representationeCCvol ¼ J ðU 0ðJÞ
h

þ JU 00ðJÞÞC�1 
 C�1 � 2U 0ðJÞ½C�1 
 C�1�T23

i
; ð3:16Þ

eCC iso ¼ 4J�4=3 I

�
� 1

3
C

�1 
 C

�
d2w

dCdC
I

�
� 1

3
C 
 C

�1
�
� 2J�2=3

3
eTTiso

h

 C

�1 þ C
�1 
 eTTiso

i
þ 4J�4=3

3
C � dw

dC

� �
C

�1
h�


 C
�1
iT23

� 1

3
C

�1 
 C
�1
�

ð3:17Þ
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with

d2w

dCdC
¼ w11

�
þ 2w12IC þ w22I

2

C
þ w2

�
I 
 I � ðw12 þ ICw22Þ I

�

 C þ C 
 I

�
� w2Iþ w22C 
 C;

ð3:18Þ
see, for example, Holzapfel (2000). Here, we introduce the following abbreviations: the superscript T23

denotes the transposition of the second and third index leading to ½A 
 B�T23C ¼ ACBT, as well as wi1 ¼
owi=oIC and wi2 ¼ owi=oIIC.

Now, in the case of our particular isochoric strain-energy function (3.4) we are interested in the limit of

small deformations and connecting the material parameters to the material parameters of linear elasticity,

namely the compression modulus K and the shear modulus G. Near the reference state, eCCjF¼I, we obtain

from Eqs. (3.16) and (3.17) the elasticity tensoreCCjF¼I ¼ KI 
 I þ 2G I
�

� 1
3
I 
 I

�
ð3:19Þ

with

G ¼ 54a þ 2c10 þ 3
ffiffiffi
3

p
c01: ð3:20Þ

The compression modulus K of the finite elasticity model coincides with K of the linear elastic case in a

natural way.

Now, we investigate the simple tension problem with a deformation gradient F ¼ k~ee1 
~ee1 þ kQ~ee2 
~ee2 þ
kQ~ee3 
~ee3, where k denotes the axial stretch and kQ the transversal stretch. The stresses in transversal

direction are zero. Thus, Eq. (3.13) leads to the two equationseTT11 ¼ f ðk; kQÞ; ð3:21Þ

0 ¼ gðk; kQÞ ð3:22Þ

for given k, with

f ðk; kQÞ � JU 0ðJÞk�2 þ 2J�2=3 w1

�
þ w2IC � w2k

2J�2=3 � 1
3
ðw1IC þ 2w2IICÞk

�2J 2=3
�
; ð3:23Þ

gðk; kQÞ � JU 0ðJÞk�2
Q þ 2J�2=3 w1

�
þ w2IC � w2k

2
QJ

�2=3 � 1
3
ðw1IC þ 2w2IICÞk

�2
Q J

2=3
�
: ð3:24Þ

Eq. (3.22) represents a scalar non-linear equation in order to calculate kQ.
For the particular model (3.4) we have, using the kinematic relations J ¼ kk2

Q, IC ¼ J�2=3ðk2 þ 2k2
QÞ and

IIC ¼ J 2=3ðk�2 þ 2k�2
Q Þ, the derivatives

U 0ðJÞ ¼ K
10

ðJ 4 � J�6Þ; w1 ¼ c10 þ 3aI2
C

and w2 ¼ c01
3

2
II

1=2

C
: ð3:25Þ

Although the material parameters are developed for near-incompressibility, we investigate the variation

of the compression modulus. In Fig. 4 the compression modulus K is varied and we compare the lateral

stretch with the incompressible case. In the proximity to the undeformed state, the lateral stretch kQ is

similar to the incompressible case (see Fig. 4). For a higher axial compression, k ! 0, the lateral stretch

increases monotonically, which one would expect in view of physical experiences or, equivalently, for a

highly stretched specimen, k ! 1, kQ decreases and kQ > 0 holds. This fact differs from the results of

Ehlers and Eipper (1998). On the basis of a few number of models of type (2.8) they emphasize the problem

using strain-energy functions of type (3.1) which might show a non-physical behaviour in lateral direction.
Of course, Fig. 4 does not prove that in such a diagram the slope is monotonically increasing or decreasing

in the compression or tensile range respectively, but we do not observe for the small compression moduli
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chosen the non-physical behaviour described. The behaviour in the lateral direction depends essentially on

the interplay between the strain-energy parts UðJÞ and wðIC; IICÞ, which is very difficult to study due to the
non-linear equation (3.22) and the difficulty to carry out experiments activating only UðJÞ or wðI

C
; II

C
Þ.

4. Conclusions

In this article we propose a new class of isotropic hyperelasticity relations for near-incompressibility
based on principal invariants. We have proven the existence of a solution based on polyconvexity and

coerciveness. Furthermore, we have shown that the extension of the strain energy of Arruda and Boyce

(1993) containing unimodular tensorial quantities satisfies polyconvexity. Moreover, the extension of the

generalized polynomial-type hyperelasticity is usually non-polyconvex. However, a particular dependence

of the first and second invariant yields a polyconvex structure. The proposed strain-energy function for

near-incompressibility has the specific advantage of being linear in the material parameters which, in the

case of their identification, leads to a linear least-square problem with non-negative solution. Furthermore,

the identification seems to be mostly non-sensitive.
Some studies of a particular model do not show a non-physical behaviour in the investigated examples,

for instance, for the lateral expansion or stretch in uniaxial compression and tension, which results from the

proposed volumetric part of the strain-energy function.

Appendix A. Necessary mathematical relationships

In the main part of the article some relationships are necessary. Here, we show the essential ones. First,

for the subsequent proofs we need the Cayley-Hamilton theorem resulting from the characteristic poly-
nomial for 3� 3 matrices, A 2 M3�3

detðA� k1Þ ¼ �k3 þ ðtrAÞk2 � ðtradjAÞk þ detA ¼ 0

and which reads

�A3 þ ðtrAÞA2 � ðtradjAÞAþ ðdetAÞ1 ¼ 0; ðA:1Þ
1 is the identity matrix. On the basis of these characteristics there are some relations between invariants and
the eigenvalues of the matrices:

0.01

0.1

1

10

100

1000

1e-08 1e-060.0001 0.01 1 100 10000

K=10 [MPa]
K=100 [MPa]
K=1000 [MPa]
incompressibility

Fig. 4. Lateral stretch versus stretch diagram.
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Lemma A.1 (Invariants). For all real diagonalizable A 2 M3�3 we set

IA :¼ tr ðAÞ ¼ k1 þ k2 þ k3;

IIA :¼ tr ðadjAÞ ¼ k1k2 þ k2k3 þ k1k3;

IIIA :¼ detA ¼ k1k2k3:

Because of (A.1) this implies

ðtrF Þ2 ¼ tr ðF 2Þ þ 2tr ðadjF Þ;
ðk1 þ k2 þ k3Þ2 ¼ k2

1 þ k2
2 þ k2

3 þ 2 k1k2ð þ k2k3 þ k1k3Þ:

Lemma A.2 (Coefficients of the characteristic polynomial). Let A be real diagonalizable and assume that

detAP 0. Then we have

I2A P 3IIA;

II2A P 3IAIIIA:

Proof. The second binomial expression shows that kikj6 ð1=2Þk2
i þ ð1=2Þk2

j holds. Therefore k2
1 þ k2

2 þ
k2
3 P k1k2 þ k2k3 þ k1k3. Hence

ðk1 þ k2 þ k3Þ2 ¼ k2
1

�
þ k2

2 þ k2
3

�
þ 2 k1k2ð þ k2k3 þ k1k3ÞP 3 k1k2ð þ k2k3 þ k1k3Þ

which proves I2A P 3IIA. In order to prove the second statement note that we may assume kiðAÞ 6¼ 0 without

loss of generality since the statement is otherwise true anyway. Let therefore detA 6¼ 0. Then the in-

verse A�1 2 M3�3 exists and with the first statement we know I2A�1 P 3II2A�1 . Moreover k̂kiðA�1Þ ¼ ð1=kiðAÞÞ.
Therefore

1

k1

�
þ 1

k2

þ 1

k3

�2

P 3
1

k1k2

�
þ 1

k2k3

þ 1

k3k1

�
;

k1k2 þ k2k3 þ k1k3

k1k2k3

� �2

P 3
k1 þ k2 þ k3

k1k2k3

� �
;

k1k2ð þ k2k3 þ k1k3Þ2 P 3ðk1 þ k2 þ k3Þ � ðk1k2k3Þ

which is just II2A P 3IAIIIA. �

In the proof of Lemma 2.2 we need some relationships between different invariants. These are shown in

the following:

Corollary A.3 (Estimates between kF k, kadjF k and det F ). Let F 2 M3�3. Then we have

kF k3 P 3
ffiffiffi
3

p
det F ;

kF k2 P
ffiffiffi
3

p
kadjF k;

kadjF k3 P 3
ffiffiffi
3

p
ðdet F Þ2;

kF k2 ¼ hF TF ; 1i6
ffiffiffi
3

p
kF TF k:

Proof. Set C ¼ F TF (right Cauchy–Green tensor). The symmetry of C ensures the applicability of the
preceding Lemma A.2. Thus
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IA ¼ tr ðF TF Þ ¼ kF k2;
IIA ¼ tr ðadj ðF TF ÞÞ ¼ tr ðadjF adjF TÞ ¼ kadjF k2;
IIIA ¼ detðF TF Þ ¼ ðdet F Þ2

and also

I2C P 3IIC () kF k2 P
ffiffiffi
3

p
kadjF k;

II2C P 3ICIIIC () kadjF k2 P
ffiffiffi
3

p
kF k det F :

The last two lines lead directly to the second statement. The last statement is only a simple algebraic

estimate. �

Appendix B. Convexity

In order to understand polyconvexity, we start with some properties of convexity. In the following, one

can imagine that W symbolizes the strain-energy function, F the deformation gradient and C the matrix

representation of the right Cauchy–Green tensor.

Definition B.1 (Convexity). Let K be a convex set and let W : K ! R. We say that W is convex if

W ðkF1 þ ð1� kÞF2Þ6 kW ðF1Þ þ ð1� kÞW ðF2Þ

for all F1; F2 2 K and k 2 ð0; 1Þ.

Note that in this definition it is necessary that the function W be defined on a convex set K.

Lemma B.2 (Second derivative and convexity). Let K be a convex set and let W : K ! R be twice diffe-

rentiable. Then the following statements are equivalent:

1. W is convex,

2. D2W ðF Þ:ðH ;HÞP 0 8F 2 K; 8H 2 LinðKÞ,

where LinðKÞ is the linear hull of K.

Proof. See Rockafellar (1970, p. 27). �

Remark B.3. In order that W : K ! R is convex, it is not sufficient to assume only

D2W ðF Þ:ðH ;HÞP 0

for all F 2 K; 8H 2 K. Since, for example, with W ðCÞ ¼ detC, W : Symþ ! R, we have K ¼ Symþ is a
convex set (cone) and

D2W ðCÞ:ðH ;HÞ ¼ 2hC; adjHiP 0

for C;H 2 Symþ, but W ðCÞ ¼ detC is not convex.

If a function is given on C ¼ F TF it is possible to relate convexity properties of a function defined on C
and the corresponding function defined on F .
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Lemma B.4 (Convexity on M3�3 and Symþð3Þ). Let C 2 Symþð3Þ and W : Symþð3Þ ! R and assume that

for all H 2 Symð3Þ: ðD2
CWðCÞ � H ;HÞP 0 and DCWðCÞ 2 Symþ

0 ð3Þ. Then the function

W : M3�3 ! R; F 7!WðF TF Þ ðB:1Þ

is convex.

Proof. See Neff (2000). �

Lemma B.5 (Convexity of the square). Let P : Rn ! R be convex and P ðZÞP 0. Then the function

Z 2 Rn 7!EðZÞ ¼ PðZÞ � P ðZÞ is convex.

Proof. First assume that P is a smooth function. The second differential of EðZÞ ¼ P ðZÞ � P ðZÞ is easy to

calculate. We get

DEðZÞ:H ¼ PðZÞ � DPðZÞ:H þ DPðZÞ:H � P ðZÞ;
D2EðZÞ:ðH ;HÞ ¼ 2 P ðZÞ � D2P ðZÞ:ðH ;HÞ

�
þ DP ðZÞ:H � DP ðZÞ:H

�
P 0:

Hence EðZÞ is convex. In the non-smooth case we proceed as follows:

EðkZ1 þ ð1� kÞZ2Þ ¼ P ðkZ1 þ ð1� kÞZ2Þ � PðkZ1 þ ð1� kÞZ2Þ:

The assumed convexity of P shows that

P ðkZ1 þ ð1� kÞZ2Þ6 kP ðZ1Þ þ ð1� kÞP ðZ2Þ:

Since the square function is a monotonically increasing function for positive values and by assumption

kP ðZ1Þ þ ð1� kÞP ðZ2Þ is positive, we obtain the estimate

EðkZ1 þ ð1� kÞZ2Þ6 kP ðZ1Þð þ ð1� kÞPðZ2ÞÞ2:

However, since the square function is itself convex, we may proceed to write

EðkZ1 þ ð1� kÞZ2Þ6 kP 2ðZ1Þ þ ð1� kÞP 2ðZ2Þ ¼ kEðZ1Þ þ ð1� kÞEðZ2Þ:

The proof is complete. �

Corollary B.6. Let P : Rn ! R be convex and assume that P ðZÞP 0. Then the function

Z 2 Rn 7! ½P ðZÞ�p; pP 1

is convex.

Proof. The same ideas as before apply to this situation. �

Lemma B.7 (Convexity and monotone composition). Let P : Rn ! R be convex and let m : R ! R be

convex and monotone increasing. Then the function Rn ! R, X 7!mðP ðX ÞÞ is convex.

Proof. A direct check of the convexity condition. �
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Since we have products of different positive scalar functions––see, for example, the strain-energy function

(2.13)––it is useful to stress the non-convexity of mixed products in general. Let Pi : R
n ! R, i ¼ 1; 2, be

convex and assume Pi P 0. Then the functions

Z 2 Rn 7!P1ðZÞ � P2ðZÞ
Z 2 Rn 7!Pp1 ðZÞ � P

p
2 ðZÞ; pP 1

are in general non-convex. x! x2ðx� 1Þ2 and x! exx2 may serve as simple examples. The function

ðx; yÞ ! x2y2 may serve as an example where functions in different variables are convex and positive, but

their product is not convex.

Appendix C. Polyconvexity

In respect of the aforementioned observations of convexity, we define in this subsection polyconvexity

and relate it to ellipticity and quasi-convexity.

Definition C.1 (Polyconvexity). Let W 2 C2ðM3�3;RÞ be a given scalar-valued energy density. We say that

F 7!W ðF Þ is polyconvex if and only if there exists a function P : M3�3 �M3�3 � R ! R (in general non-

unique) such that

W ðF Þ ¼ P ðF ; adjF ; det F Þ
and the function R19 ! R; ðX ; Y ; ZÞ 7!P ðX ; Y ; ZÞ is convex.

A consequence of this definition for a more restrictive class of energy densities is

Corollary C.2 (Additive polyconvex functions). Let W ðF Þ ¼ W1ðF Þ þ W2ðadjF Þ þ W3ðdet F Þ. If the

Wi ; i ¼ 1; . . . ; 3, are convex with respect to their arguments, then W is altogether polyconvex.

This corollary will be one of our main tools in constructing polyconvex strain energies: as we have seen

before in the main part of the article, we identify functions which are convex on M3�3 and R and then take
positive combinations of them. Let us now relate polyconvexity to quasi-convexity and ellipticity.

Definition C.3 (Quasi-convexity). We say that the elastic free energy W is quasi-convex whenever for ar-

bitrary X � R3 and all F 2 M3�3 and all v 2 C1
0 ðXÞ we have

W ðF Þ � jXj ¼
Z

X
W ðF ÞdX 6

Z
X
W ðF þrvðX ÞÞdX :

This means that the homogeneous solution r/ ¼ F of the homogeneous boundary-value problem

DivDFW ðr/Þ ¼ 0;

/oXðX Þ ¼ F :X þ c

is automatically a global minimizer. It is clear that this condition is a non-local stability condition which is

difficult to handle. Every quasi-convex function is automatically elliptic.

Definition C.4 (Ellipticity). We say that
(1) Elastic free energy W 2 C2ðM3�3;RÞ leads to a uniformly elliptic equilibrium system whenever the so-

called uniform Legendre-Hadamard condition
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9cþ > 08F 2 M3�3 : 8n; g 2 R3 : D2
FW ðF Þ:ðn 
 g; n 
 gÞP cþ � knk2kgk2

holds.

(2) W is strictly elliptic if and only if the strict Legendre-Hadamard condition

8F 2 M3�3 : 8n; g 2 R3 : D2
F W ðF Þ:ðn 
 g; n 
 gÞ > 0

holds.

(3) Elastic free energy W is strictly rank-one convex if the function f : R ! R, f ðtÞ ¼ W ðF þ t � ðn 
 gÞÞ
is strictly convex for all F 2 M3�3 and all n; g 2 R3.

Theorem C.5 (Rank one convexity and eigenvalues). Let W ðF Þ ¼ Uðk1; k2; k3Þ, where U is symmetric and the

ki’s are the eigenvalues of the matrix representation of the right stretch tensor U ¼ ðF TF Þ1=2. If W is rank one

convex and U 2 C2ðR3Þ then

o2U

ok2
i

ðk1; k2; k3ÞP 0:

Proof. This is Proposition 1.2 of Dacorogna (1989, p. 254). �

The decisive property in the context treated here is the following well known result.

Theorem C.6 (Polyconvexity implies ellipticity). Let the stored energy W be sufficiently smooth. Then, if W is

polyconvex, it is quasi-convex and elliptic. Moreover rank-one ellipticity and ellipticity are equivalent. Let W
be strictly elliptic. Then the Baker–Ericksen inequalities (see Baker and Ericksen, 1954; Marsden and

Hughes, 1983) are satisfied.

Proof. Standard result in the calculus of variations (see Dacorogna, 1989). We note that the reverse im-

plications are in general not true. �

Although we restrict our applications to purely isochoric terms, we study some more general expressions:

Lemma C.7 (Generic polyconvex terms). Let F 2 M3�3. Then each of the following terms is polyconvex:

ð1Þ tr ðF TF Þð Þk

detðF TF Þ1=3
; kP 1:

ð2Þ tr ðadj ðF TF ÞÞð Þk

detðF TF Þ1=3
; kP 1:

Proof. (1) We consider the term

tr ðF TF Þð Þk

detðF TF Þ1=3
¼ kF k2k

ðdet F Þ2=3
:

We have already shown (see Section 2.3.1) that the function P ðx; yÞ ¼ ð1=xaÞ � yp is convex provided that
a ¼ 2=3 and p ¼ 2kP 2. Now define a new function
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bWW ðF ; eJJ Þ :¼ P ðeJJ ; kF kÞ ¼ kF k2keJJ 2=3
:

Note that through the monotonicity of the 2kth power for positive arguments we have the inequality

kkF1 þ ð1� kÞF2k2k 6 kkF1kð þ ð1� kÞkF2kÞ2k: ðC:1Þ

It remains to check the convexity of bWW ðF ; eJJ Þ. To this end

bWW ðkF1 þ ð1� kÞF2; keJJ1 þ ð1� kÞeJJ2Þ ¼ P ðkeJJ1 þ ð1� kÞeJJ2; kkF1 þ ð1� kÞF2kÞ ¼
kkF1 þ ð1� kÞF2k2k

ðkeJJ1 þ ð1� kÞeJJ2Þ2=3 :
With (C.1) we have

bWW ðkF1 þ ð1� kÞF2; keJJ1 þ ð1� kÞeJJ2Þ6 kkF1k þ ð1� kÞkF2kð Þ2k

ðkeJJ1 þ ð1� kÞeJJ2Þ2=3
¼ P ðkeJJ1 þ ð1� kÞeJJ2; kkF1k þ ð1� kÞkF2kÞ:

The convexity of P yields

bWW ðkF1 þ ð1� kÞF2; keJJ1 þ ð1� kÞeJJ2Þ6 kP ðeJJ ; kF1kÞ þ ð1� kÞP ðeJJ2; kF2kÞ
¼ k bWW ðF1; eJJ1Þ þ ð1� kÞ bWW ðF2; eJJ2Þ:

The proof is completed in terms of the correct extension (2.16).

(2) Set

tr ðadj ðF TF ÞÞk

detðF TF Þ1=3
¼ kadjF k2k

ðdet F Þ2=3

and we proceed as in case 1. �

Other polyconvex functions are, for example, the following terms, which we call Generic exponential

polyconvex terms. For a given deformation gradient F 2 M3�3 each of the following terms is polyconvex:

ð1Þ exp
tr ðF TF Þk

detðF TF Þ1=3

" #
; kP 1:

ð2Þ exp
tr ðadj ðF TF ÞÞk

detðF TF Þ1=3

" #
; kP 1:

ð3Þ exp W ðF Þð Þ if W ðF Þ is polyconvex:

In view of the preceding Lemma each argument of the exponential is polyconvex. Since exp is convex and

monotonically increasing it preserves the underlying convexity. Hence the composition is polyconvex. Note,

however, that these functions alone are not stress-free in the reference configuration, i.e. we have to
combine them with other polyconvex functions in such a way that zero stresses are satisfied due to an

undeformed state.
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Appendix D. Coercivity

In order to propose a class of strain-energy functions satisfying an existence theorem, we start with

Definition D.1 (Coercivity). Let Ið/Þ be the elastic stored energy functional with the deformation /ðX ; tÞ.
We say that I is q-coercive whenever

Ið/Þ6K ) k/k1;q;X 6 eKK ;
where k/k1;q;X is the Sobolev norm on the space W 1;qðXÞ.

In view of Section 3 we investigate the coercivity of a special energy which contains those terms already

proved to be polyconvex, see Corollary 2.3, and which yields a stress-free initial configuration in a natural

way.

Lemma D.2 (Coercivity of special energy). For J ¼ det F and C ¼ C=ðdetCÞ1=3 with C ¼ F TF let the elastic

stored energy density be given by

W ðF Þ ¼ K ðdet F Þ5
 

þ 1

ðdet F Þ5
� 2

!
þ a

kF k2

ðdet F Þ2=3

 !3
0@ � 33

1A
þ
Xm
i¼1

ci0
kF k2

ðdet F Þ2=3

 
� 3

!i

þ
Xn
j¼1

c0j
kadjF k3

ðdet F Þ2

 
� 3

ffiffiffi
3

p
!j

ðD:1Þ

¼ K J 5
�

þ 1

J 5
� 2

�
þ aððtrCÞ3 � 33Þ þ

Xm
i¼1

ci0 trC
�

� 3
�i þXn

j¼1

c0j ðtradjCÞ3=2
�

� 3
ffiffiffi
3

p �j
ðD:2Þ

with K; a > 0, ci0 P 0, i ¼ 1; . . . ;m, and c0j P 0, j ¼ 1; . . . ; n. Then

Ið/Þ ¼
Z

X
W ðr/ÞdX

is coercive for q ¼ 4.

Proof.

kF kqq;X ¼ F

ðdet F Þ1=3
ðdet F Þ1=3

"""""
"""""
q

q;X

¼
Z

X

F

ðdet F Þ1=3

"""""
"""""
q

j det F jq=3 dX apply Youngs inequality; xy6
1

a
xa þ 1

b
yb; with

1

a
þ 1

b
¼ 1

6

Z
X

1

a
F

ðdet F Þ1=3

"""""
"""""
qa 
þ 1

b
j det F jqb=3

!
dX taking a ¼ 3

2
; b ¼ 3 yields

¼
Z

X

2

3

F

ðdet F Þ1=3

"""""
"""""
3q=2

0@ þ 1

3
j det F jq

1AdX for q ¼ 4 this shows

¼
Z

X

2

3

F

ðdet F Þ1=3

"""""
"""""
6

0@ þ 1

3
j detCj2

1AdX
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6

Z
X

2

3

kF k2

ðdet F Þ2=3

 !3
0@ þ 1

3
ð1þ j det F j5Þ

1AdX

6
2

3a
Ið/Þ þ 33 þ 1

3K
Ið/Þ þ 2þ 1

3
jXj

6
2

3a

�
þ 1

3K

�
Ið/Þ þ 2þ 33 þ 1

3
jXj:

Applying Poincar�ee�s inequality will complete the proof if Dirichlet boundary conditions are applied. �

The strain energy of type (D.1) or (D.2) respectively, contains the term að� � �Þ, a > 0, which is necessary to
guarantee the coercivity in conjunction with the chosen volumetric term, Kð� � �Þ, K > 0. Having proved the

coercivity and polyconvexity of the polynomial ansatz chosen, it is a standard matter to prove the existence

of a minimizer.

Theorem D.3 (Existence of minimizers). Let the reference configuration X � R3 be a bounded smooth domain

and let oX1 be a part of the boundary oX with non-vanishing Lebesgue measure. Assume that

Ið/Þ ¼
R

XW ðr/ðX ÞÞdX with W as in (D.1). Let /0 2 W 1;4ðXÞ be given with Ið/0Þ < 1. Then the problem

inf Ið/Þ



¼
Z

X
W ðr/ðX ÞÞdX ; /ðX Þ ¼ /0ðX Þ for X 2 oX1; / 2 W 1;4ðXÞ

$
admits at least one solution. Formally, this solution corresponds to a solution of the boundary-value problem

DivDFW ðr/Þ ¼ 0;

/ðX Þ ¼ /0ðX Þ; X 2 oX1:

Proof. It has been shown in Corollary 2.3 and Lemma D.2 that the energy (D.1) or (D.2) is polyconvex and

coercive on W 1;4ðXÞ. Since Ið/ÞP 0 and Ið/0Þ < 1 the infimum exists and the direct methods of variation,

together with weak convergence, yield the existence of at least one minimizer. �
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